诊断错误的可计算表型:为诊断错误的症状-疾病配对分析 (SPADE) 应用开发数据模式。

IF 2.2 Q2 MEDICINE, GENERAL & INTERNAL
Diagnosis Pub Date : 2024-05-03 eCollection Date: 2024-08-01 DOI:10.1515/dx-2023-0138
Ahmed Hassoon, Charles Ng, Harold Lehmann, Hetal Rupani, Susan Peterson, Michael A Horberg, Ava L Liberman, Adam L Sharp, Michelle C Johansen, Kathy McDonald, J Mathrew Austin, David E Newman-Toker
{"title":"诊断错误的可计算表型:为诊断错误的症状-疾病配对分析 (SPADE) 应用开发数据模式。","authors":"Ahmed Hassoon, Charles Ng, Harold Lehmann, Hetal Rupani, Susan Peterson, Michael A Horberg, Ava L Liberman, Adam L Sharp, Michelle C Johansen, Kathy McDonald, J Mathrew Austin, David E Newman-Toker","doi":"10.1515/dx-2023-0138","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Diagnostic errors are the leading cause of preventable harm in clinical practice. Implementable tools to quantify and target this problem are needed. To address this gap, we aimed to generalize the Symptom-Disease Pair Analysis of Diagnostic Error (SPADE) framework by developing its computable phenotype and then demonstrated how that schema could be applied in multiple clinical contexts.</p><p><strong>Methods: </strong>We created an information model for the SPADE processes, then mapped data fields from electronic health records (EHR) and claims data in use to that model to create the SPADE information model (intention) and the SPADE computable phenotype (extension). Later we validated the computable phenotype and tested it in four case studies in three different health systems to demonstrate its utility.</p><p><strong>Results: </strong>We mapped and tested the SPADE computable phenotype in three different sites using four different case studies. We showed that data fields to compute an SPADE base measure are fully available in the EHR Data Warehouse for extraction and can operationalize the SPADE framework from provider and/or insurer perspective, and they could be implemented on numerous health systems for future work in monitor misdiagnosis-related harms.</p><p><strong>Conclusions: </strong>Data for the SPADE base measure is readily available in EHR and administrative claims. The method of data extraction is potentially universally applicable, and the data extracted is conveniently available within a network system. Further study is needed to validate the computable phenotype across different settings with different data infrastructures.</p>","PeriodicalId":11273,"journal":{"name":"Diagnosis","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392038/pdf/","citationCount":"0","resultStr":"{\"title\":\"Computable phenotype for diagnostic error: developing the data schema for application of symptom-disease pair analysis of diagnostic error (SPADE).\",\"authors\":\"Ahmed Hassoon, Charles Ng, Harold Lehmann, Hetal Rupani, Susan Peterson, Michael A Horberg, Ava L Liberman, Adam L Sharp, Michelle C Johansen, Kathy McDonald, J Mathrew Austin, David E Newman-Toker\",\"doi\":\"10.1515/dx-2023-0138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Diagnostic errors are the leading cause of preventable harm in clinical practice. Implementable tools to quantify and target this problem are needed. To address this gap, we aimed to generalize the Symptom-Disease Pair Analysis of Diagnostic Error (SPADE) framework by developing its computable phenotype and then demonstrated how that schema could be applied in multiple clinical contexts.</p><p><strong>Methods: </strong>We created an information model for the SPADE processes, then mapped data fields from electronic health records (EHR) and claims data in use to that model to create the SPADE information model (intention) and the SPADE computable phenotype (extension). Later we validated the computable phenotype and tested it in four case studies in three different health systems to demonstrate its utility.</p><p><strong>Results: </strong>We mapped and tested the SPADE computable phenotype in three different sites using four different case studies. We showed that data fields to compute an SPADE base measure are fully available in the EHR Data Warehouse for extraction and can operationalize the SPADE framework from provider and/or insurer perspective, and they could be implemented on numerous health systems for future work in monitor misdiagnosis-related harms.</p><p><strong>Conclusions: </strong>Data for the SPADE base measure is readily available in EHR and administrative claims. The method of data extraction is potentially universally applicable, and the data extracted is conveniently available within a network system. Further study is needed to validate the computable phenotype across different settings with different data infrastructures.</p>\",\"PeriodicalId\":11273,\"journal\":{\"name\":\"Diagnosis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392038/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnosis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/dx-2023-0138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnosis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dx-2023-0138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:诊断错误是临床实践中造成可预防伤害的主要原因。我们需要可实施的工具来量化和解决这一问题。为了填补这一空白,我们旨在通过开发可计算表型来推广诊断错误的症状-疾病配对分析(SPADE)框架,然后演示如何将该模式应用于多种临床环境:方法:我们为 SPADE 流程创建了一个信息模型,然后将电子健康记录 (EHR) 中的数据字段和使用中的理赔数据映射到该模型中,从而创建了 SPADE 信息模型(意向)和 SPADE 可计算表型(扩展)。随后,我们对可计算表型进行了验证,并在三个不同医疗系统的四个案例研究中对其进行了测试,以证明其实用性:我们利用四个不同的案例研究,在三个不同的地点绘制并测试了 SPADE 可计算表型。我们发现,在电子病历数据仓库(EHR Data Warehouse)中完全可以提取用于计算 SPADE 基本衡量标准的数据字段,并且可以从提供者和/或保险公司的角度对 SPADE 框架进行操作:结论:SPADE 基础指标的数据可随时从电子病历和行政索赔中获取。数据提取方法可能具有普遍适用性,提取的数据可方便地在网络系统中使用。还需要进一步研究,以便在不同数据基础设施的不同环境中验证可计算的表型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computable phenotype for diagnostic error: developing the data schema for application of symptom-disease pair analysis of diagnostic error (SPADE).

Objectives: Diagnostic errors are the leading cause of preventable harm in clinical practice. Implementable tools to quantify and target this problem are needed. To address this gap, we aimed to generalize the Symptom-Disease Pair Analysis of Diagnostic Error (SPADE) framework by developing its computable phenotype and then demonstrated how that schema could be applied in multiple clinical contexts.

Methods: We created an information model for the SPADE processes, then mapped data fields from electronic health records (EHR) and claims data in use to that model to create the SPADE information model (intention) and the SPADE computable phenotype (extension). Later we validated the computable phenotype and tested it in four case studies in three different health systems to demonstrate its utility.

Results: We mapped and tested the SPADE computable phenotype in three different sites using four different case studies. We showed that data fields to compute an SPADE base measure are fully available in the EHR Data Warehouse for extraction and can operationalize the SPADE framework from provider and/or insurer perspective, and they could be implemented on numerous health systems for future work in monitor misdiagnosis-related harms.

Conclusions: Data for the SPADE base measure is readily available in EHR and administrative claims. The method of data extraction is potentially universally applicable, and the data extracted is conveniently available within a network system. Further study is needed to validate the computable phenotype across different settings with different data infrastructures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diagnosis
Diagnosis MEDICINE, GENERAL & INTERNAL-
CiteScore
7.20
自引率
5.70%
发文量
41
期刊介绍: Diagnosis focuses on how diagnosis can be advanced, how it is taught, and how and why it can fail, leading to diagnostic errors. The journal welcomes both fundamental and applied works, improvement initiatives, opinions, and debates to encourage new thinking on improving this critical aspect of healthcare quality.  Topics: -Factors that promote diagnostic quality and safety -Clinical reasoning -Diagnostic errors in medicine -The factors that contribute to diagnostic error: human factors, cognitive issues, and system-related breakdowns -Improving the value of diagnosis – eliminating waste and unnecessary testing -How culture and removing blame promote awareness of diagnostic errors -Training and education related to clinical reasoning and diagnostic skills -Advances in laboratory testing and imaging that improve diagnostic capability -Local, national and international initiatives to reduce diagnostic error
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信