Juan Saulo González-González, Alfonso Martínez-Santos, María José Emparán-Legaspi, Armando Pineda-Contreras, Francisco Javier Martínez-Martínez, Marcos Flores-Alamo, Hector García-Ortega
{"title":"N,N'-(1,3-亚苯基)二氨基甲酸二乙酯的分子结构和通过构象变化选择性地与茶碱复配。","authors":"Juan Saulo González-González, Alfonso Martínez-Santos, María José Emparán-Legaspi, Armando Pineda-Contreras, Francisco Javier Martínez-Martínez, Marcos Flores-Alamo, Hector García-Ortega","doi":"10.1107/S2053229624003358","DOIUrl":null,"url":null,"abstract":"<p><p>The receptor ability of diethyl N,N'-(1,3-phenylene)dicarbamate (1) to form host-guest complexes with theophylline (TEO) and caffeine (CAF) by mechanochemistry was evaluated. The formation of the 1-TEO complex (C<sub>12</sub>H<sub>16</sub>N<sub>2</sub>O<sub>4</sub>·C<sub>7</sub>H<sub>8</sub>N<sub>4</sub>O<sub>2</sub>) was preferred and involves the conformational change of one of the ethyl carbamate groups of 1 from the endo conformation to the exo conformation to allow the formation of intermolecular interactions. The formation of an N-H...O=C hydrogen bond between 1 and TEO triggers the conformational change of 1. CAF molecules are unable to form an N-H...O=C hydrogen bond with 1, making the conformational change and, therefore, the formation of the complex impossible. Conformational change and selective binding were monitored by IR spectroscopy, solid-state <sup>13</sup>C nuclear magnetic resonance and single-crystal X-ray diffraction. The 1-TEO complex was characterized by IR spectroscopy, solid-state <sup>13</sup>C nuclear magnetic resonance, powder X-ray diffraction and single-crystal X-ray diffraction.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11150875/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular structure and selective theophylline complexation by conformational change of diethyl N,N'-(1,3-phenylene)dicarbamate.\",\"authors\":\"Juan Saulo González-González, Alfonso Martínez-Santos, María José Emparán-Legaspi, Armando Pineda-Contreras, Francisco Javier Martínez-Martínez, Marcos Flores-Alamo, Hector García-Ortega\",\"doi\":\"10.1107/S2053229624003358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The receptor ability of diethyl N,N'-(1,3-phenylene)dicarbamate (1) to form host-guest complexes with theophylline (TEO) and caffeine (CAF) by mechanochemistry was evaluated. The formation of the 1-TEO complex (C<sub>12</sub>H<sub>16</sub>N<sub>2</sub>O<sub>4</sub>·C<sub>7</sub>H<sub>8</sub>N<sub>4</sub>O<sub>2</sub>) was preferred and involves the conformational change of one of the ethyl carbamate groups of 1 from the endo conformation to the exo conformation to allow the formation of intermolecular interactions. The formation of an N-H...O=C hydrogen bond between 1 and TEO triggers the conformational change of 1. CAF molecules are unable to form an N-H...O=C hydrogen bond with 1, making the conformational change and, therefore, the formation of the complex impossible. Conformational change and selective binding were monitored by IR spectroscopy, solid-state <sup>13</sup>C nuclear magnetic resonance and single-crystal X-ray diffraction. The 1-TEO complex was characterized by IR spectroscopy, solid-state <sup>13</sup>C nuclear magnetic resonance, powder X-ray diffraction and single-crystal X-ray diffraction.</p>\",\"PeriodicalId\":7115,\"journal\":{\"name\":\"Acta Crystallographica Section C Structural Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11150875/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section C Structural Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1107/S2053229624003358\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section C Structural Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S2053229624003358","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
通过机械化学方法评估了 N,N'-(1,3-亚苯基)二氨基甲酸二乙酯(1)与茶碱(TEO)和咖啡因(CAF)形成主-客复合物的受体能力。1-TEO 复合物(C12H16N2O4-C7H8N4O2)的形成是首选的,它涉及到 1 的一个氨基甲酸乙酯基团从内构象到外构象的构象变化,以便形成分子间的相互作用。CAF 分子无法与 1 形成 N-H...O=C 氢键,从而导致构象改变,因此也不可能形成复合物。红外光谱、固态 13C 核磁共振和单晶 X 射线衍射监测了构象变化和选择性结合。通过红外光谱、固态 13C 核磁共振、粉末 X 射线衍射和单晶 X 射线衍射对 1-TEO 复合物进行了表征。
Molecular structure and selective theophylline complexation by conformational change of diethyl N,N'-(1,3-phenylene)dicarbamate.
The receptor ability of diethyl N,N'-(1,3-phenylene)dicarbamate (1) to form host-guest complexes with theophylline (TEO) and caffeine (CAF) by mechanochemistry was evaluated. The formation of the 1-TEO complex (C12H16N2O4·C7H8N4O2) was preferred and involves the conformational change of one of the ethyl carbamate groups of 1 from the endo conformation to the exo conformation to allow the formation of intermolecular interactions. The formation of an N-H...O=C hydrogen bond between 1 and TEO triggers the conformational change of 1. CAF molecules are unable to form an N-H...O=C hydrogen bond with 1, making the conformational change and, therefore, the formation of the complex impossible. Conformational change and selective binding were monitored by IR spectroscopy, solid-state 13C nuclear magnetic resonance and single-crystal X-ray diffraction. The 1-TEO complex was characterized by IR spectroscopy, solid-state 13C nuclear magnetic resonance, powder X-ray diffraction and single-crystal X-ray diffraction.
期刊介绍:
Acta Crystallographica Section C: Structural Chemistry is continuing its transition to a journal that publishes exciting science with structural content, in particular, important results relating to the chemical sciences. Section C is the journal of choice for the rapid publication of articles that highlight interesting research facilitated by the determination, calculation or analysis of structures of any type, other than macromolecular structures. Articles that emphasize the science and the outcomes that were enabled by the study are particularly welcomed. Authors are encouraged to include mainstream science in their papers, thereby producing manuscripts that are substantial scientific well-rounded contributions that appeal to a broad community of readers and increase the profile of the authors.