{"title":"探索苦与甜:大语言模型在分子味觉预测中的应用","authors":"Renxiu Song, Kaifeng Liu, Qizheng He, Fei He* and Weiwei Han*, ","doi":"10.1021/acs.jcim.4c00681","DOIUrl":null,"url":null,"abstract":"<p >The perception of bitter and sweet tastes is a crucial aspect of human sensory experience. Concerns over the long-term use of aspartame, a widely used sweetener suspected of carcinogenic risks, highlight the importance of developing new taste modifiers. This study utilizes Large Language Models (LLMs) such as GPT-3.5 and GPT-4 for predicting molecular taste characteristics, with a focus on the bitter-sweet dichotomy. Employing random and scaffold data splitting strategies, GPT-4 demonstrated superior performance, achieving an impressive 86% accuracy under scaffold partitioning. Additionally, ChatGPT was employed to extract specific molecular features associated with bitter and sweet tastes. Utilizing these insights, novel molecular compounds with distinct taste profiles were successfully generated. These compounds were validated for their bitter and sweet properties through molecular docking and molecular dynamics simulation, and their practicality was further confirmed by ADMET toxicity testing and DeepSA synthesis feasibility. This research highlights the potential of LLMs in predicting molecular properties and their implications in health and chemical science.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"64 10","pages":"4102–4111"},"PeriodicalIF":5.3000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Bitter and Sweet: The Application of Large Language Models in Molecular Taste Prediction\",\"authors\":\"Renxiu Song, Kaifeng Liu, Qizheng He, Fei He* and Weiwei Han*, \",\"doi\":\"10.1021/acs.jcim.4c00681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The perception of bitter and sweet tastes is a crucial aspect of human sensory experience. Concerns over the long-term use of aspartame, a widely used sweetener suspected of carcinogenic risks, highlight the importance of developing new taste modifiers. This study utilizes Large Language Models (LLMs) such as GPT-3.5 and GPT-4 for predicting molecular taste characteristics, with a focus on the bitter-sweet dichotomy. Employing random and scaffold data splitting strategies, GPT-4 demonstrated superior performance, achieving an impressive 86% accuracy under scaffold partitioning. Additionally, ChatGPT was employed to extract specific molecular features associated with bitter and sweet tastes. Utilizing these insights, novel molecular compounds with distinct taste profiles were successfully generated. These compounds were validated for their bitter and sweet properties through molecular docking and molecular dynamics simulation, and their practicality was further confirmed by ADMET toxicity testing and DeepSA synthesis feasibility. This research highlights the potential of LLMs in predicting molecular properties and their implications in health and chemical science.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"64 10\",\"pages\":\"4102–4111\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.4c00681\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c00681","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Exploring Bitter and Sweet: The Application of Large Language Models in Molecular Taste Prediction
The perception of bitter and sweet tastes is a crucial aspect of human sensory experience. Concerns over the long-term use of aspartame, a widely used sweetener suspected of carcinogenic risks, highlight the importance of developing new taste modifiers. This study utilizes Large Language Models (LLMs) such as GPT-3.5 and GPT-4 for predicting molecular taste characteristics, with a focus on the bitter-sweet dichotomy. Employing random and scaffold data splitting strategies, GPT-4 demonstrated superior performance, achieving an impressive 86% accuracy under scaffold partitioning. Additionally, ChatGPT was employed to extract specific molecular features associated with bitter and sweet tastes. Utilizing these insights, novel molecular compounds with distinct taste profiles were successfully generated. These compounds were validated for their bitter and sweet properties through molecular docking and molecular dynamics simulation, and their practicality was further confirmed by ADMET toxicity testing and DeepSA synthesis feasibility. This research highlights the potential of LLMs in predicting molecular properties and their implications in health and chemical science.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.