AIGD-PFT:首个人工智能驱动的 1998 年至 2023 年全球每日无间隙 4 公里浮游植物功能类型产品

IF 11.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Yuan Zhang, Fang Shen, Renhu Li, Mengyu Li, Zhaoxin Li, Songyu Chen, Xuerong Sun
{"title":"AIGD-PFT:首个人工智能驱动的 1998 年至 2023 年全球每日无间隙 4 公里浮游植物功能类型产品","authors":"Yuan Zhang, Fang Shen, Renhu Li, Mengyu Li, Zhaoxin Li, Songyu Chen, Xuerong Sun","doi":"10.5194/essd-2024-122","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Long time series of spatiotemporally continuous phytoplankton functional type (PFT) products are essential for understanding marine ecosystems, global biogeochemical cycles, and effective marine management. In this study, by integrating artificial intelligence (AI) technology with multi-source marine big data, we have developed a Spatial–Temporal–Ecological Ensemble model based on Deep Learning (STEE-DL), and then generated the first AI-driven Global Daily gap-free 4 km PFTs product from 1998 to 2023 (AIGD-PFT), significantly enhancing the accuracy and spatiotemporal coverage of quantifying eight major PFTs (i.e., Diatoms, Dinoflagellates, Haptophytes, Pelagophytes, Cryptophytes, Green Algae, Prokaryotes, and Prochlorococcus). The input data encompass physical oceanographic, biogeochemical, spatiotemporal information, and ocean color data (OC-CCI v6.0) that have been gap-filled using a Discrete Cosine Transform with a Penalized Least Square (DCT-PLS) approach. The STEE-DL model utilizes an ensemble strategy with 100 ResNet models, applying Monte Carlo and bootstrapping methods to estimate optimal PFT values and assess model uncertainty through ensemble means and standard deviations. The model's performance was validated using multiple cross-validation strategies—random, spatial-block, and temporal-block—combined with in-situ data, demonstrating STEE-DL's robustness and generalization capability. The daily updates and seamless nature of the AIGD-PFT product capture the complex dynamics of coastal regions effectively. Finally, through a comparative analysis using a triple-collocation (TC) approach, the competitive advantages of the AIGD-PFT product over existing products were validated. The AIGD-PFT product not only provides the foundation for detailed analyses of PFT trends, interannual variability, and the impacts of climate change on phytoplankton composition across various temporal and spatial scales, but also has the potential to facilitate precise quantification of marine carbon flux and enhances the accuracy of biogeochemical models. A video demonstration is available at https://doi.org/10.5446/67366 (Zhang and Shen, 2024a). The complete product dataset (1998–2023) can be freely downloaded at https://doi.org/10.11888/RemoteSen.tpdc.301164 (Zhang and Shen, 2024b).","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":"12 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AIGD-PFT: The first AI-driven Global Daily gap-free 4 km Phytoplankton Functional Type products from 1998 to 2023\",\"authors\":\"Yuan Zhang, Fang Shen, Renhu Li, Mengyu Li, Zhaoxin Li, Songyu Chen, Xuerong Sun\",\"doi\":\"10.5194/essd-2024-122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Long time series of spatiotemporally continuous phytoplankton functional type (PFT) products are essential for understanding marine ecosystems, global biogeochemical cycles, and effective marine management. In this study, by integrating artificial intelligence (AI) technology with multi-source marine big data, we have developed a Spatial–Temporal–Ecological Ensemble model based on Deep Learning (STEE-DL), and then generated the first AI-driven Global Daily gap-free 4 km PFTs product from 1998 to 2023 (AIGD-PFT), significantly enhancing the accuracy and spatiotemporal coverage of quantifying eight major PFTs (i.e., Diatoms, Dinoflagellates, Haptophytes, Pelagophytes, Cryptophytes, Green Algae, Prokaryotes, and Prochlorococcus). The input data encompass physical oceanographic, biogeochemical, spatiotemporal information, and ocean color data (OC-CCI v6.0) that have been gap-filled using a Discrete Cosine Transform with a Penalized Least Square (DCT-PLS) approach. The STEE-DL model utilizes an ensemble strategy with 100 ResNet models, applying Monte Carlo and bootstrapping methods to estimate optimal PFT values and assess model uncertainty through ensemble means and standard deviations. The model's performance was validated using multiple cross-validation strategies—random, spatial-block, and temporal-block—combined with in-situ data, demonstrating STEE-DL's robustness and generalization capability. The daily updates and seamless nature of the AIGD-PFT product capture the complex dynamics of coastal regions effectively. Finally, through a comparative analysis using a triple-collocation (TC) approach, the competitive advantages of the AIGD-PFT product over existing products were validated. The AIGD-PFT product not only provides the foundation for detailed analyses of PFT trends, interannual variability, and the impacts of climate change on phytoplankton composition across various temporal and spatial scales, but also has the potential to facilitate precise quantification of marine carbon flux and enhances the accuracy of biogeochemical models. A video demonstration is available at https://doi.org/10.5446/67366 (Zhang and Shen, 2024a). The complete product dataset (1998–2023) can be freely downloaded at https://doi.org/10.11888/RemoteSen.tpdc.301164 (Zhang and Shen, 2024b).\",\"PeriodicalId\":48747,\"journal\":{\"name\":\"Earth System Science Data\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth System Science Data\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/essd-2024-122\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-2024-122","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要。长时间序列的时空连续浮游植物功能类型(PFT)产品对于了解海洋生态系统、全球生物地球化学循环和有效的海洋管理至关重要。在本研究中,我们将人工智能(AI)技术与多源海洋大数据相结合,开发了基于深度学习的时空生态集合模型(STEE-DL),并生成了首个人工智能驱动的 1998-2023 年全球每日无间隙 4 km 浮游植物功能类型产品(AIGD-PFT),显著提高了八大浮游植物功能类型(即硅藻、甲藻、甲壳藻、藻蓝蛋白、藻蓝蛋白、藻蓝蛋白、藻蓝蛋白、藻蓝蛋白、藻蓝蛋白、藻蓝蛋白、藻蓝蛋白、藻蓝蛋白、藻蓝蛋白)的量化精度和时空覆盖率、硅藻、甲藻、隐藻、绿藻、原核生物和原绿球藻)的精度和时空覆盖范围。输入数据包括物理海洋学、生物地球化学、时空信息和海洋颜色数据(OC-CCI v6.0),这些数据已利用离散余弦变换和惩罚性最小平方(DCT-PLS)方法进行了间隙填充。STEE-DL 模型采用 100 个 ResNet 模型的集合策略,应用蒙特卡罗和引导方法来估计最佳 PFT 值,并通过集合均值和标准偏差来评估模型的不确定性。该模型的性能通过多种交叉验证策略--随机、空间块和时间块--并结合现场数据进行了验证,证明了 STEE-DL 的稳健性和泛化能力。AIGD-PFT 产品的每日更新和无缝性有效地捕捉了沿岸地区的复杂动态。最后,通过采用三重定位(TC)方法进行比较分析,验证了 AIGD-PFT 产品与现有产品相比的竞争优势。AIGD-PFT 产品不仅为详细分析 PFT 趋势、年际变异性以及气候变化对不同时空尺度浮游植物组成的影响奠定了基础,而且有可能促进海洋碳通量的精确量化,提高生物地球化学模式的准确性。视频演示见 https://doi.org/10.5446/67366(Zhang and Shen,2024a)。完整的产品数据集(1998-2023 年)可在 https://doi.org/10.11888/RemoteSen.tpdc.301164 免费下载(Zhang 和 Shen,2024b)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AIGD-PFT: The first AI-driven Global Daily gap-free 4 km Phytoplankton Functional Type products from 1998 to 2023
Abstract. Long time series of spatiotemporally continuous phytoplankton functional type (PFT) products are essential for understanding marine ecosystems, global biogeochemical cycles, and effective marine management. In this study, by integrating artificial intelligence (AI) technology with multi-source marine big data, we have developed a Spatial–Temporal–Ecological Ensemble model based on Deep Learning (STEE-DL), and then generated the first AI-driven Global Daily gap-free 4 km PFTs product from 1998 to 2023 (AIGD-PFT), significantly enhancing the accuracy and spatiotemporal coverage of quantifying eight major PFTs (i.e., Diatoms, Dinoflagellates, Haptophytes, Pelagophytes, Cryptophytes, Green Algae, Prokaryotes, and Prochlorococcus). The input data encompass physical oceanographic, biogeochemical, spatiotemporal information, and ocean color data (OC-CCI v6.0) that have been gap-filled using a Discrete Cosine Transform with a Penalized Least Square (DCT-PLS) approach. The STEE-DL model utilizes an ensemble strategy with 100 ResNet models, applying Monte Carlo and bootstrapping methods to estimate optimal PFT values and assess model uncertainty through ensemble means and standard deviations. The model's performance was validated using multiple cross-validation strategies—random, spatial-block, and temporal-block—combined with in-situ data, demonstrating STEE-DL's robustness and generalization capability. The daily updates and seamless nature of the AIGD-PFT product capture the complex dynamics of coastal regions effectively. Finally, through a comparative analysis using a triple-collocation (TC) approach, the competitive advantages of the AIGD-PFT product over existing products were validated. The AIGD-PFT product not only provides the foundation for detailed analyses of PFT trends, interannual variability, and the impacts of climate change on phytoplankton composition across various temporal and spatial scales, but also has the potential to facilitate precise quantification of marine carbon flux and enhances the accuracy of biogeochemical models. A video demonstration is available at https://doi.org/10.5446/67366 (Zhang and Shen, 2024a). The complete product dataset (1998–2023) can be freely downloaded at https://doi.org/10.11888/RemoteSen.tpdc.301164 (Zhang and Shen, 2024b).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth System Science Data
Earth System Science Data GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍: Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信