{"title":"上个世纪大部分陆地表面的氮供应量是否有所下降?基于模型的分析","authors":"Peter M. Vitousek, Xiaoyu Cen, Peter M. Groffman","doi":"10.1007/s10533-024-01146-y","DOIUrl":null,"url":null,"abstract":"<div><p>A recent publication (Mason et al. in Science 376:261, 2022a) suggested that nitrogen (N) availability has declined as a consequence of multiple ongoing components of anthropogenic global change. This suggestion is controversial, because human alteration of the global N cycle is substantial and has driven much-increased fixation of N globally. We used a simple model that has been validated across a climate gradient in Hawai ‘i to test the possibility of a widespread decline in N availability, the evidence supporting it, and the possible mechanisms underlying it. This analysis showed that a decrease in δ<sup>15</sup>N is not sufficient evidence for a decline in N availability, because δ<sup>15</sup>N in ecosystems reflects both the isotope ratios in inputs of N to the ecosystem AND fractionation of N isotopes as N cycles, with enrichment of the residual N in the ecosystem caused by greater losses of N by the fractionating pathways that are more important in N-rich sites. However, there is other evidence for declining N availability that is independent of <sup>15</sup>N and that suggests a widespread decline in N availability. We evaluated whether and how components of anthropogenic global change could cause declining N availability. Earlier work had demonstrated that both increases in the variability of precipitation due to climate change and ecosystem-level disturbance could drive uncontrollable losses of N that reduce N availability and could cause persistent N limitation at equilibrium. Here we modelled climate-change-driven increases in temperature and increasing atmospheric concentrations of CO<sub>2</sub>. We show that increasing atmospheric CO<sub>2</sub> concentrations can drive non-equilibrium decreases in N availability and cause the development of N limitation, while the effects of increased temperature appear to be relatively small and short-lived. These environmental changes may cause reductions in N availability over the vast areas of Earth that are not affected by high rates of atmospheric deposition and/or N enrichment associated with urban and agricultural land use.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 6","pages":"793 - 806"},"PeriodicalIF":3.9000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01146-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Has nitrogen availability decreased over much of the land surface in the past century? A model-based analysis\",\"authors\":\"Peter M. Vitousek, Xiaoyu Cen, Peter M. Groffman\",\"doi\":\"10.1007/s10533-024-01146-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A recent publication (Mason et al. in Science 376:261, 2022a) suggested that nitrogen (N) availability has declined as a consequence of multiple ongoing components of anthropogenic global change. This suggestion is controversial, because human alteration of the global N cycle is substantial and has driven much-increased fixation of N globally. We used a simple model that has been validated across a climate gradient in Hawai ‘i to test the possibility of a widespread decline in N availability, the evidence supporting it, and the possible mechanisms underlying it. This analysis showed that a decrease in δ<sup>15</sup>N is not sufficient evidence for a decline in N availability, because δ<sup>15</sup>N in ecosystems reflects both the isotope ratios in inputs of N to the ecosystem AND fractionation of N isotopes as N cycles, with enrichment of the residual N in the ecosystem caused by greater losses of N by the fractionating pathways that are more important in N-rich sites. However, there is other evidence for declining N availability that is independent of <sup>15</sup>N and that suggests a widespread decline in N availability. We evaluated whether and how components of anthropogenic global change could cause declining N availability. Earlier work had demonstrated that both increases in the variability of precipitation due to climate change and ecosystem-level disturbance could drive uncontrollable losses of N that reduce N availability and could cause persistent N limitation at equilibrium. Here we modelled climate-change-driven increases in temperature and increasing atmospheric concentrations of CO<sub>2</sub>. We show that increasing atmospheric CO<sub>2</sub> concentrations can drive non-equilibrium decreases in N availability and cause the development of N limitation, while the effects of increased temperature appear to be relatively small and short-lived. These environmental changes may cause reductions in N availability over the vast areas of Earth that are not affected by high rates of atmospheric deposition and/or N enrichment associated with urban and agricultural land use.</p></div>\",\"PeriodicalId\":8901,\"journal\":{\"name\":\"Biogeochemistry\",\"volume\":\"167 6\",\"pages\":\"793 - 806\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10533-024-01146-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogeochemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10533-024-01146-y\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-024-01146-y","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Has nitrogen availability decreased over much of the land surface in the past century? A model-based analysis
A recent publication (Mason et al. in Science 376:261, 2022a) suggested that nitrogen (N) availability has declined as a consequence of multiple ongoing components of anthropogenic global change. This suggestion is controversial, because human alteration of the global N cycle is substantial and has driven much-increased fixation of N globally. We used a simple model that has been validated across a climate gradient in Hawai ‘i to test the possibility of a widespread decline in N availability, the evidence supporting it, and the possible mechanisms underlying it. This analysis showed that a decrease in δ15N is not sufficient evidence for a decline in N availability, because δ15N in ecosystems reflects both the isotope ratios in inputs of N to the ecosystem AND fractionation of N isotopes as N cycles, with enrichment of the residual N in the ecosystem caused by greater losses of N by the fractionating pathways that are more important in N-rich sites. However, there is other evidence for declining N availability that is independent of 15N and that suggests a widespread decline in N availability. We evaluated whether and how components of anthropogenic global change could cause declining N availability. Earlier work had demonstrated that both increases in the variability of precipitation due to climate change and ecosystem-level disturbance could drive uncontrollable losses of N that reduce N availability and could cause persistent N limitation at equilibrium. Here we modelled climate-change-driven increases in temperature and increasing atmospheric concentrations of CO2. We show that increasing atmospheric CO2 concentrations can drive non-equilibrium decreases in N availability and cause the development of N limitation, while the effects of increased temperature appear to be relatively small and short-lived. These environmental changes may cause reductions in N availability over the vast areas of Earth that are not affected by high rates of atmospheric deposition and/or N enrichment associated with urban and agricultural land use.
期刊介绍:
Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.