Victor P. DeCaria, Cory D. Hauck, Stefan R. Schnake
{"title":"线性玻尔兹曼半导体模型的渐近保留非连续伽勒金方法","authors":"Victor P. DeCaria, Cory D. Hauck, Stefan R. Schnake","doi":"10.1137/22m1485784","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1067-1097, June 2024. <br/> Abstract. A key property of the linear Boltzmann semiconductor model is that as the collision frequency tends to infinity, the phase space density [math] converges to an isotropic function [math], called the drift-diffusion limit, where [math] is a Maxwellian and the physical density [math] satisfies a second-order parabolic PDE known as the drift-diffusion equation. Numerical approximations that mirror this property are said to be asymptotic preserving. In this paper we build a discontinuous Galerkin method to the semiconductor model, and we show this scheme is both uniformly stable in [math], where 1/[math] is the scale of the collision frequency, and asymptotic preserving. In particular, we discuss what properties the discrete Maxwellian must satisfy in order for the schemes to converge in [math] to an accurate [math]-approximation of the drift-diffusion limit. Discrete versions of the drift-diffusion equation and error estimates in several norms with respect to [math] and the spacial resolution are also included.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"26 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Asymptotic Preserving Discontinuous Galerkin Method for a Linear Boltzmann Semiconductor Model\",\"authors\":\"Victor P. DeCaria, Cory D. Hauck, Stefan R. Schnake\",\"doi\":\"10.1137/22m1485784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1067-1097, June 2024. <br/> Abstract. A key property of the linear Boltzmann semiconductor model is that as the collision frequency tends to infinity, the phase space density [math] converges to an isotropic function [math], called the drift-diffusion limit, where [math] is a Maxwellian and the physical density [math] satisfies a second-order parabolic PDE known as the drift-diffusion equation. Numerical approximations that mirror this property are said to be asymptotic preserving. In this paper we build a discontinuous Galerkin method to the semiconductor model, and we show this scheme is both uniformly stable in [math], where 1/[math] is the scale of the collision frequency, and asymptotic preserving. In particular, we discuss what properties the discrete Maxwellian must satisfy in order for the schemes to converge in [math] to an accurate [math]-approximation of the drift-diffusion limit. Discrete versions of the drift-diffusion equation and error estimates in several norms with respect to [math] and the spacial resolution are also included.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1485784\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1485784","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An Asymptotic Preserving Discontinuous Galerkin Method for a Linear Boltzmann Semiconductor Model
SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1067-1097, June 2024. Abstract. A key property of the linear Boltzmann semiconductor model is that as the collision frequency tends to infinity, the phase space density [math] converges to an isotropic function [math], called the drift-diffusion limit, where [math] is a Maxwellian and the physical density [math] satisfies a second-order parabolic PDE known as the drift-diffusion equation. Numerical approximations that mirror this property are said to be asymptotic preserving. In this paper we build a discontinuous Galerkin method to the semiconductor model, and we show this scheme is both uniformly stable in [math], where 1/[math] is the scale of the collision frequency, and asymptotic preserving. In particular, we discuss what properties the discrete Maxwellian must satisfy in order for the schemes to converge in [math] to an accurate [math]-approximation of the drift-diffusion limit. Discrete versions of the drift-diffusion equation and error estimates in several norms with respect to [math] and the spacial resolution are also included.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.