仙人掌图和块状图的双重度量维数

IF 0.9 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Kairui Nie, Kexiang Xu
{"title":"仙人掌图和块状图的双重度量维数","authors":"Kairui Nie, Kexiang Xu","doi":"10.1007/s10878-024-01168-0","DOIUrl":null,"url":null,"abstract":"<p>Given a connected graph <i>G</i>, two vertices <span>\\(u,v\\in V(G)\\)</span> doubly resolve <span>\\(x,y\\in V(G)\\)</span> if <span>\\(d_{G}(x,u)-d_{G}(y,u)\\ne d_{G}(x,v)-d_{G}(y,v)\\)</span>. The doubly metric dimension <span>\\(\\psi (G)\\)</span> of <i>G</i> is the cardinality of a minimum set of vertices that doubly resolves each pair of vertices from <i>V</i>(<i>G</i>). It is well known that deciding the doubly metric dimension of <i>G</i> is NP-hard. In this work we determine the exact values of doubly metric dimensions of unicyclic graphs which completes the known result. Furthermore, we give formulae for doubly metric dimensions of cactus graphs and block graphs.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"22 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The doubly metric dimensions of cactus graphs and block graphs\",\"authors\":\"Kairui Nie, Kexiang Xu\",\"doi\":\"10.1007/s10878-024-01168-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a connected graph <i>G</i>, two vertices <span>\\\\(u,v\\\\in V(G)\\\\)</span> doubly resolve <span>\\\\(x,y\\\\in V(G)\\\\)</span> if <span>\\\\(d_{G}(x,u)-d_{G}(y,u)\\\\ne d_{G}(x,v)-d_{G}(y,v)\\\\)</span>. The doubly metric dimension <span>\\\\(\\\\psi (G)\\\\)</span> of <i>G</i> is the cardinality of a minimum set of vertices that doubly resolves each pair of vertices from <i>V</i>(<i>G</i>). It is well known that deciding the doubly metric dimension of <i>G</i> is NP-hard. In this work we determine the exact values of doubly metric dimensions of unicyclic graphs which completes the known result. Furthermore, we give formulae for doubly metric dimensions of cactus graphs and block graphs.</p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-024-01168-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01168-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个连通图 G,如果 \(d_{G}(x,u)-d_{G}(y,u)\ne d_{G}(x,v)-d_{G}(y,v)\) ,则两个顶点 \(u,v\in V(G)\) 双解 \(x,y\in V(G)\) 。G 的双重度量维度((\psi (G)\))是双重解析 V(G) 中每对顶点的最小顶点集的心数。众所周知,决定 G 的双重度量维度是 NP 难的。在这项工作中,我们确定了单环图的双重度量维度的精确值,从而完善了已知结果。此外,我们还给出了仙人掌图和块状图的双重度量维数公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The doubly metric dimensions of cactus graphs and block graphs

The doubly metric dimensions of cactus graphs and block graphs

Given a connected graph G, two vertices \(u,v\in V(G)\) doubly resolve \(x,y\in V(G)\) if \(d_{G}(x,u)-d_{G}(y,u)\ne d_{G}(x,v)-d_{G}(y,v)\). The doubly metric dimension \(\psi (G)\) of G is the cardinality of a minimum set of vertices that doubly resolves each pair of vertices from V(G). It is well known that deciding the doubly metric dimension of G is NP-hard. In this work we determine the exact values of doubly metric dimensions of unicyclic graphs which completes the known result. Furthermore, we give formulae for doubly metric dimensions of cactus graphs and block graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信