Bagas Prabowo;Jurgen Dijkema;Xiao Xue;Fabio Sebastiano;Lieven M. K. Vandersypen;Masoud Babaie
{"title":"基于自旋质子栅极读出的固有信噪比的建模和实验验证及其对读出电子器件的影响","authors":"Bagas Prabowo;Jurgen Dijkema;Xiao Xue;Fabio Sebastiano;Lieven M. K. Vandersypen;Masoud Babaie","doi":"10.1109/TQE.2024.3385673","DOIUrl":null,"url":null,"abstract":"In semiconductor spin quantum bits (qubits), the radio-frequency (RF) gate-based readout is a promising solution for future large-scale integration, as it allows for a fast, frequency-multiplexed readout architecture, enabling multiple qubits to be read out simultaneously. This article introduces a theoretical framework to evaluate the effect of various parameters, such as the readout probe power, readout chain's noise performance, and integration time on the intrinsic readout signal-to-noise ratio, and thus readout fidelity of RF gate-based readout systems. By analyzing the underlying physics of spin qubits during readout, this work proposes a qubit readout model that takes into account the qubit's quantum mechanical properties, providing a way to evaluate the tradeoffs among the aforementioned parameters. The validity of the proposed model is evaluated by comparing the simulation and experimental results. The proposed analytical approach, the developed model, and the experimental results enable designers to optimize the entire readout chain effectively, thus leading to a faster, lower power readout system with integrated cryogenic electronics.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-15"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10493854","citationCount":"0","resultStr":"{\"title\":\"Modeling and Experimental Validation of the Intrinsic SNR in Spin Qubit Gate-Based Readout and Its Impacts on Readout Electronics\",\"authors\":\"Bagas Prabowo;Jurgen Dijkema;Xiao Xue;Fabio Sebastiano;Lieven M. K. Vandersypen;Masoud Babaie\",\"doi\":\"10.1109/TQE.2024.3385673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In semiconductor spin quantum bits (qubits), the radio-frequency (RF) gate-based readout is a promising solution for future large-scale integration, as it allows for a fast, frequency-multiplexed readout architecture, enabling multiple qubits to be read out simultaneously. This article introduces a theoretical framework to evaluate the effect of various parameters, such as the readout probe power, readout chain's noise performance, and integration time on the intrinsic readout signal-to-noise ratio, and thus readout fidelity of RF gate-based readout systems. By analyzing the underlying physics of spin qubits during readout, this work proposes a qubit readout model that takes into account the qubit's quantum mechanical properties, providing a way to evaluate the tradeoffs among the aforementioned parameters. The validity of the proposed model is evaluated by comparing the simulation and experimental results. The proposed analytical approach, the developed model, and the experimental results enable designers to optimize the entire readout chain effectively, thus leading to a faster, lower power readout system with integrated cryogenic electronics.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"5 \",\"pages\":\"1-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10493854\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10493854/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10493854/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling and Experimental Validation of the Intrinsic SNR in Spin Qubit Gate-Based Readout and Its Impacts on Readout Electronics
In semiconductor spin quantum bits (qubits), the radio-frequency (RF) gate-based readout is a promising solution for future large-scale integration, as it allows for a fast, frequency-multiplexed readout architecture, enabling multiple qubits to be read out simultaneously. This article introduces a theoretical framework to evaluate the effect of various parameters, such as the readout probe power, readout chain's noise performance, and integration time on the intrinsic readout signal-to-noise ratio, and thus readout fidelity of RF gate-based readout systems. By analyzing the underlying physics of spin qubits during readout, this work proposes a qubit readout model that takes into account the qubit's quantum mechanical properties, providing a way to evaluate the tradeoffs among the aforementioned parameters. The validity of the proposed model is evaluated by comparing the simulation and experimental results. The proposed analytical approach, the developed model, and the experimental results enable designers to optimize the entire readout chain effectively, thus leading to a faster, lower power readout system with integrated cryogenic electronics.