V. Sokolenko , A. Dróżdż , Z. Rarata , S. Kubacki , W. Elsner
{"title":"声学激励下分离剪切层过渡的实验研究","authors":"V. Sokolenko , A. Dróżdż , Z. Rarata , S. Kubacki , W. Elsner","doi":"10.1016/j.expthermflusci.2024.111227","DOIUrl":null,"url":null,"abstract":"<div><p>The paper discusses experimental results on the effect of broadband acoustic excitation on laminar-to-turbulent transition in a separated shear layer developing on a flat plate subjected to an adverse pressure gradient (APG) and freestream turbulence level equal to <em>Tu</em> ≅ 1 %. The study encompasses the influence of Reynolds number (<em>Re<sub>x</sub></em> = 185 000 and 370 000) and sound pressure level (SPL). The inherent complexity of the problem is simplified by providing an acoustic excitation from a controlled source (loudspeaker), acting on the boundary layer developing on the flat plate with a given streamwise pressure gradient. Two types of instabilities were identified in the pre-transitional boundary layer in unexcited flows. One was related to the inviscid Kelvin-Helmholtz (K-H) instability, while the second one was associated with formation of streamwise-oriented Klebanoff streaks (so-called Klebanoff mode).</p><p>In the low Reynolds number case (<em>Re<sub>x</sub></em> = 185 000), the K-H was responsible for transition onset, while in the high Reynolds number flow (<em>Re<sub>x</sub></em> = 370 000), the Klebanoff distortions dominated the turbulent breakdown with the minor effect of the K-H instability. In addition to the naturally developing boundary layer, the flow was exposed to a pink noise characterized by SPL = 125 dB and 135 dB. In the low Reynolds number case, the acoustic excitation enhanced the K-H instability. It resulted in an earlier laminar-to-turbulent transition in case with higher sound pressure level (135 dB). In the high Reynolds number flow, the acoustic excitation enhanced the mixed-type transition mechanism with dominant role of the Klebanoff streaks. Shrinking or complete suppression of the separation bubbles was observed, depending on the applied sound pressure level (125 and 135 dB).</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"157 ","pages":"Article 111227"},"PeriodicalIF":2.8000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study of a separated shear layer transition under acoustic excitation\",\"authors\":\"V. Sokolenko , A. Dróżdż , Z. Rarata , S. Kubacki , W. Elsner\",\"doi\":\"10.1016/j.expthermflusci.2024.111227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper discusses experimental results on the effect of broadband acoustic excitation on laminar-to-turbulent transition in a separated shear layer developing on a flat plate subjected to an adverse pressure gradient (APG) and freestream turbulence level equal to <em>Tu</em> ≅ 1 %. The study encompasses the influence of Reynolds number (<em>Re<sub>x</sub></em> = 185 000 and 370 000) and sound pressure level (SPL). The inherent complexity of the problem is simplified by providing an acoustic excitation from a controlled source (loudspeaker), acting on the boundary layer developing on the flat plate with a given streamwise pressure gradient. Two types of instabilities were identified in the pre-transitional boundary layer in unexcited flows. One was related to the inviscid Kelvin-Helmholtz (K-H) instability, while the second one was associated with formation of streamwise-oriented Klebanoff streaks (so-called Klebanoff mode).</p><p>In the low Reynolds number case (<em>Re<sub>x</sub></em> = 185 000), the K-H was responsible for transition onset, while in the high Reynolds number flow (<em>Re<sub>x</sub></em> = 370 000), the Klebanoff distortions dominated the turbulent breakdown with the minor effect of the K-H instability. In addition to the naturally developing boundary layer, the flow was exposed to a pink noise characterized by SPL = 125 dB and 135 dB. In the low Reynolds number case, the acoustic excitation enhanced the K-H instability. It resulted in an earlier laminar-to-turbulent transition in case with higher sound pressure level (135 dB). In the high Reynolds number flow, the acoustic excitation enhanced the mixed-type transition mechanism with dominant role of the Klebanoff streaks. Shrinking or complete suppression of the separation bubbles was observed, depending on the applied sound pressure level (125 and 135 dB).</p></div>\",\"PeriodicalId\":12294,\"journal\":{\"name\":\"Experimental Thermal and Fluid Science\",\"volume\":\"157 \",\"pages\":\"Article 111227\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Thermal and Fluid Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0894177724000967\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177724000967","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Experimental study of a separated shear layer transition under acoustic excitation
The paper discusses experimental results on the effect of broadband acoustic excitation on laminar-to-turbulent transition in a separated shear layer developing on a flat plate subjected to an adverse pressure gradient (APG) and freestream turbulence level equal to Tu ≅ 1 %. The study encompasses the influence of Reynolds number (Rex = 185 000 and 370 000) and sound pressure level (SPL). The inherent complexity of the problem is simplified by providing an acoustic excitation from a controlled source (loudspeaker), acting on the boundary layer developing on the flat plate with a given streamwise pressure gradient. Two types of instabilities were identified in the pre-transitional boundary layer in unexcited flows. One was related to the inviscid Kelvin-Helmholtz (K-H) instability, while the second one was associated with formation of streamwise-oriented Klebanoff streaks (so-called Klebanoff mode).
In the low Reynolds number case (Rex = 185 000), the K-H was responsible for transition onset, while in the high Reynolds number flow (Rex = 370 000), the Klebanoff distortions dominated the turbulent breakdown with the minor effect of the K-H instability. In addition to the naturally developing boundary layer, the flow was exposed to a pink noise characterized by SPL = 125 dB and 135 dB. In the low Reynolds number case, the acoustic excitation enhanced the K-H instability. It resulted in an earlier laminar-to-turbulent transition in case with higher sound pressure level (135 dB). In the high Reynolds number flow, the acoustic excitation enhanced the mixed-type transition mechanism with dominant role of the Klebanoff streaks. Shrinking or complete suppression of the separation bubbles was observed, depending on the applied sound pressure level (125 and 135 dB).
期刊介绍:
Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.