Gorkem Sariyer , Sachin Kumar Mangla , Mert Erkan Sozen , Guo Li , Yigit Kazancoglu
{"title":"利用可解释人工智能了解公共交通使用率,促进可持续发展","authors":"Gorkem Sariyer , Sachin Kumar Mangla , Mert Erkan Sozen , Guo Li , Yigit Kazancoglu","doi":"10.1016/j.omega.2024.103105","DOIUrl":null,"url":null,"abstract":"<div><p>Public transportation usage prediction is valuable for the sustainable development of transportation systems, particularly in crowded megacities. Machine learning technologies are of great interest for predicting public transportation usage. While these technologies outperform many other techniques, they suffer from limited interpretability. Explainable artificial intelligence (XAI) tools and techniques that offer <em>post-hoc</em> explanations of the obtained predictions are gaining popularity. This paper proposes an advanced tree-based ensemble algorithm for public transportation usage rate prediction. We aim to explain the predictions both with the most widely used technique of XAI, Shapley additive explanation (SHAP) and in the light of the rules presented. To predict the total public transportation usage, the proposed model combines all types of public transportation, categorized as ferry, railway, and bus, unlike most existing studies focusing on a single kind of public transport. Besides the sort of transportation, the day of the week, whether the day is special, and the daily ratio of passenger types were identified as model features for predicting the daily usage of each type of public transportation. We tested the proposed model using an open data set from Izmir City, Turkey. While the model had superior prediction performance, the explanations showed that the type of public transportation, weekday, and the ratio of full-fare passengers have the highest SHAP values, and the model features have many interactions. We also validated our results using an online data set showing Google search trends.</p></div>","PeriodicalId":19529,"journal":{"name":"Omega-international Journal of Management Science","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging explainable artificial intelligence in understanding public transportation usage rates for sustainable development\",\"authors\":\"Gorkem Sariyer , Sachin Kumar Mangla , Mert Erkan Sozen , Guo Li , Yigit Kazancoglu\",\"doi\":\"10.1016/j.omega.2024.103105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Public transportation usage prediction is valuable for the sustainable development of transportation systems, particularly in crowded megacities. Machine learning technologies are of great interest for predicting public transportation usage. While these technologies outperform many other techniques, they suffer from limited interpretability. Explainable artificial intelligence (XAI) tools and techniques that offer <em>post-hoc</em> explanations of the obtained predictions are gaining popularity. This paper proposes an advanced tree-based ensemble algorithm for public transportation usage rate prediction. We aim to explain the predictions both with the most widely used technique of XAI, Shapley additive explanation (SHAP) and in the light of the rules presented. To predict the total public transportation usage, the proposed model combines all types of public transportation, categorized as ferry, railway, and bus, unlike most existing studies focusing on a single kind of public transport. Besides the sort of transportation, the day of the week, whether the day is special, and the daily ratio of passenger types were identified as model features for predicting the daily usage of each type of public transportation. We tested the proposed model using an open data set from Izmir City, Turkey. While the model had superior prediction performance, the explanations showed that the type of public transportation, weekday, and the ratio of full-fare passengers have the highest SHAP values, and the model features have many interactions. We also validated our results using an online data set showing Google search trends.</p></div>\",\"PeriodicalId\":19529,\"journal\":{\"name\":\"Omega-international Journal of Management Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Omega-international Journal of Management Science\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0305048324000719\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Omega-international Journal of Management Science","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305048324000719","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
Leveraging explainable artificial intelligence in understanding public transportation usage rates for sustainable development
Public transportation usage prediction is valuable for the sustainable development of transportation systems, particularly in crowded megacities. Machine learning technologies are of great interest for predicting public transportation usage. While these technologies outperform many other techniques, they suffer from limited interpretability. Explainable artificial intelligence (XAI) tools and techniques that offer post-hoc explanations of the obtained predictions are gaining popularity. This paper proposes an advanced tree-based ensemble algorithm for public transportation usage rate prediction. We aim to explain the predictions both with the most widely used technique of XAI, Shapley additive explanation (SHAP) and in the light of the rules presented. To predict the total public transportation usage, the proposed model combines all types of public transportation, categorized as ferry, railway, and bus, unlike most existing studies focusing on a single kind of public transport. Besides the sort of transportation, the day of the week, whether the day is special, and the daily ratio of passenger types were identified as model features for predicting the daily usage of each type of public transportation. We tested the proposed model using an open data set from Izmir City, Turkey. While the model had superior prediction performance, the explanations showed that the type of public transportation, weekday, and the ratio of full-fare passengers have the highest SHAP values, and the model features have many interactions. We also validated our results using an online data set showing Google search trends.
期刊介绍:
Omega reports on developments in management, including the latest research results and applications. Original contributions and review articles describe the state of the art in specific fields or functions of management, while there are shorter critical assessments of particular management techniques. Other features of the journal are the "Memoranda" section for short communications and "Feedback", a correspondence column. Omega is both stimulating reading and an important source for practising managers, specialists in management services, operational research workers and management scientists, management consultants, academics, students and research personnel throughout the world. The material published is of high quality and relevance, written in a manner which makes it accessible to all of this wide-ranging readership. Preference will be given to papers with implications to the practice of management. Submissions of purely theoretical papers are discouraged. The review of material for publication in the journal reflects this aim.