在平滑条件下估算函数及其导数

IF 1.4 3区 数学 Q2 MATHEMATICS, APPLIED
Eunji Lim
{"title":"在平滑条件下估算函数及其导数","authors":"Eunji Lim","doi":"10.1287/moor.2020.0161","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating an unknown function [Formula: see text] and its partial derivatives from a noisy data set of n observations, where we make no assumptions about [Formula: see text] except that it is smooth in the sense that it has square integrable partial derivatives of order m. A natural candidate for the estimator of [Formula: see text] in such a case is the best fit to the data set that satisfies a certain smoothness condition. This estimator can be seen as a least squares estimator subject to an upper bound on some measure of smoothness. Another useful estimator is the one that minimizes the degree of smoothness subject to an upper bound on the average of squared errors. We prove that these two estimators are computable as solutions to quadratic programs, establish the consistency of these estimators and their partial derivatives, and study the convergence rate as [Formula: see text]. The effectiveness of the estimators is illustrated numerically in a setting where the value of a stock option and its second derivative are estimated as functions of the underlying stock price.","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"40 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating a Function and Its Derivatives Under a Smoothness Condition\",\"authors\":\"Eunji Lim\",\"doi\":\"10.1287/moor.2020.0161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of estimating an unknown function [Formula: see text] and its partial derivatives from a noisy data set of n observations, where we make no assumptions about [Formula: see text] except that it is smooth in the sense that it has square integrable partial derivatives of order m. A natural candidate for the estimator of [Formula: see text] in such a case is the best fit to the data set that satisfies a certain smoothness condition. This estimator can be seen as a least squares estimator subject to an upper bound on some measure of smoothness. Another useful estimator is the one that minimizes the degree of smoothness subject to an upper bound on the average of squared errors. We prove that these two estimators are computable as solutions to quadratic programs, establish the consistency of these estimators and their partial derivatives, and study the convergence rate as [Formula: see text]. The effectiveness of the estimators is illustrated numerically in a setting where the value of a stock option and its second derivative are estimated as functions of the underlying stock price.\",\"PeriodicalId\":49852,\"journal\":{\"name\":\"Mathematics of Operations Research\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Operations Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2020.0161\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2020.0161","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这种情况下,[公式:见正文] 的一个自然候选估计子是满足一定平稳性条件的最佳拟合数据集。这个估计值可以看作是最小二乘估计值,它受制于某个平滑度量的上限。另一种有用的估计器是最小化平滑度的估计器,它受制于平方误差平均值的上限。我们证明了这两个估计器可以作为二次方程程序的解来计算,建立了这些估计器及其偏导数的一致性,并研究了收敛率[公式:见正文]。在估算股票期权价值及其二阶导数作为标的股票价格函数时,我们用数字说明了估算器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating a Function and Its Derivatives Under a Smoothness Condition
We consider the problem of estimating an unknown function [Formula: see text] and its partial derivatives from a noisy data set of n observations, where we make no assumptions about [Formula: see text] except that it is smooth in the sense that it has square integrable partial derivatives of order m. A natural candidate for the estimator of [Formula: see text] in such a case is the best fit to the data set that satisfies a certain smoothness condition. This estimator can be seen as a least squares estimator subject to an upper bound on some measure of smoothness. Another useful estimator is the one that minimizes the degree of smoothness subject to an upper bound on the average of squared errors. We prove that these two estimators are computable as solutions to quadratic programs, establish the consistency of these estimators and their partial derivatives, and study the convergence rate as [Formula: see text]. The effectiveness of the estimators is illustrated numerically in a setting where the value of a stock option and its second derivative are estimated as functions of the underlying stock price.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics of Operations Research
Mathematics of Operations Research 管理科学-应用数学
CiteScore
3.40
自引率
5.90%
发文量
178
审稿时长
15.0 months
期刊介绍: Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信