{"title":"在平滑条件下估算函数及其导数","authors":"Eunji Lim","doi":"10.1287/moor.2020.0161","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating an unknown function [Formula: see text] and its partial derivatives from a noisy data set of n observations, where we make no assumptions about [Formula: see text] except that it is smooth in the sense that it has square integrable partial derivatives of order m. A natural candidate for the estimator of [Formula: see text] in such a case is the best fit to the data set that satisfies a certain smoothness condition. This estimator can be seen as a least squares estimator subject to an upper bound on some measure of smoothness. Another useful estimator is the one that minimizes the degree of smoothness subject to an upper bound on the average of squared errors. We prove that these two estimators are computable as solutions to quadratic programs, establish the consistency of these estimators and their partial derivatives, and study the convergence rate as [Formula: see text]. The effectiveness of the estimators is illustrated numerically in a setting where the value of a stock option and its second derivative are estimated as functions of the underlying stock price.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating a Function and Its Derivatives Under a Smoothness Condition\",\"authors\":\"Eunji Lim\",\"doi\":\"10.1287/moor.2020.0161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of estimating an unknown function [Formula: see text] and its partial derivatives from a noisy data set of n observations, where we make no assumptions about [Formula: see text] except that it is smooth in the sense that it has square integrable partial derivatives of order m. A natural candidate for the estimator of [Formula: see text] in such a case is the best fit to the data set that satisfies a certain smoothness condition. This estimator can be seen as a least squares estimator subject to an upper bound on some measure of smoothness. Another useful estimator is the one that minimizes the degree of smoothness subject to an upper bound on the average of squared errors. We prove that these two estimators are computable as solutions to quadratic programs, establish the consistency of these estimators and their partial derivatives, and study the convergence rate as [Formula: see text]. The effectiveness of the estimators is illustrated numerically in a setting where the value of a stock option and its second derivative are estimated as functions of the underlying stock price.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2020.0161\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2020.0161","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Estimating a Function and Its Derivatives Under a Smoothness Condition
We consider the problem of estimating an unknown function [Formula: see text] and its partial derivatives from a noisy data set of n observations, where we make no assumptions about [Formula: see text] except that it is smooth in the sense that it has square integrable partial derivatives of order m. A natural candidate for the estimator of [Formula: see text] in such a case is the best fit to the data set that satisfies a certain smoothness condition. This estimator can be seen as a least squares estimator subject to an upper bound on some measure of smoothness. Another useful estimator is the one that minimizes the degree of smoothness subject to an upper bound on the average of squared errors. We prove that these two estimators are computable as solutions to quadratic programs, establish the consistency of these estimators and their partial derivatives, and study the convergence rate as [Formula: see text]. The effectiveness of the estimators is illustrated numerically in a setting where the value of a stock option and its second derivative are estimated as functions of the underlying stock price.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.