{"title":"用于海冰浓度分析的多尺度二阶自回归递归滤波方法","authors":"Lu Yang, Xuefeng Zhang","doi":"10.1007/s13131-023-2297-8","DOIUrl":null,"url":null,"abstract":"<p>To effectively extract multi-scale information from observation data and improve computational efficiency, a multi-scale second-order autoregressive recursive filter (MSRF) method is designed. The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter (SMRF) method. The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations. Moreover, compared with the SMRF scheme, the MSRF scheme improves computational accuracy and efficiency to some extent. The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation, but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2 % compared to the SMRF scheme. On the other hand, compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed, the MSRF scheme only needs to perform two filter processes in one iteration, greatly improving filtering efficiency. In the two-dimensional experiment of sea ice concentration, the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme. This means that the MSRF scheme can achieve better performance with less computational cost, which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future.</p>","PeriodicalId":6922,"journal":{"name":"Acta Oceanologica Sinica","volume":"18 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-scale second-order autoregressive recursive filter approach for the sea ice concentration analysis\",\"authors\":\"Lu Yang, Xuefeng Zhang\",\"doi\":\"10.1007/s13131-023-2297-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To effectively extract multi-scale information from observation data and improve computational efficiency, a multi-scale second-order autoregressive recursive filter (MSRF) method is designed. The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter (SMRF) method. The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations. Moreover, compared with the SMRF scheme, the MSRF scheme improves computational accuracy and efficiency to some extent. The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation, but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2 % compared to the SMRF scheme. On the other hand, compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed, the MSRF scheme only needs to perform two filter processes in one iteration, greatly improving filtering efficiency. In the two-dimensional experiment of sea ice concentration, the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme. This means that the MSRF scheme can achieve better performance with less computational cost, which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future.</p>\",\"PeriodicalId\":6922,\"journal\":{\"name\":\"Acta Oceanologica Sinica\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Oceanologica Sinica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s13131-023-2297-8\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Oceanologica Sinica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13131-023-2297-8","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
A multi-scale second-order autoregressive recursive filter approach for the sea ice concentration analysis
To effectively extract multi-scale information from observation data and improve computational efficiency, a multi-scale second-order autoregressive recursive filter (MSRF) method is designed. The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter (SMRF) method. The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations. Moreover, compared with the SMRF scheme, the MSRF scheme improves computational accuracy and efficiency to some extent. The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation, but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2 % compared to the SMRF scheme. On the other hand, compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed, the MSRF scheme only needs to perform two filter processes in one iteration, greatly improving filtering efficiency. In the two-dimensional experiment of sea ice concentration, the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme. This means that the MSRF scheme can achieve better performance with less computational cost, which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future.
期刊介绍:
Founded in 1982, Acta Oceanologica Sinica is the official bi-monthly journal of the Chinese Society of Oceanography. It seeks to provide a forum for research papers in the field of oceanography from all over the world. In working to advance scholarly communication it has made the fast publication of high-quality research papers within this field its primary goal.
The journal encourages submissions from all branches of oceanography, including marine physics, marine chemistry, marine geology, marine biology, marine hydrology, marine meteorology, ocean engineering, marine remote sensing and marine environment sciences.
It publishes original research papers, review articles as well as research notes covering the whole spectrum of oceanography. Special issues emanating from related conferences and meetings are also considered. All papers are subject to peer review and are published online at SpringerLink.