具有对数增长的一类基尔霍夫-布西内斯克问题的解的存在性和多重性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Romulo D. Carlos, Lamine Mbarki, Shuang Yang
{"title":"具有对数增长的一类基尔霍夫-布西内斯克问题的解的存在性和多重性","authors":"Romulo D. Carlos, Lamine Mbarki, Shuang Yang","doi":"10.1007/s00009-024-02649-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, two problems related to the following class of elliptic Kirchhoff–Boussinesq-type models are analyzed in the subcritical (<span>\\(\\beta =0\\)</span>) and critical (<span>\\(\\beta =1\\)</span>) cases: </p><span>$$\\begin{aligned} \\Delta ^{2} u \\!- \\!\\Delta _p u \\!=\\! \\tau |u|^{q-2} u{\\ln |u|}\\!+\\!\\beta |u|^{2_{**}-2}u\\ \\text{ in } \\ \\Omega \\ \\ \\text{ and } \\ {\\Delta u=u=0} \\ \\text{ on } \\ \\ \\partial \\Omega , \\end{aligned}$$</span><p>where <span>\\(\\tau &gt;0\\)</span>, <span>\\(2&lt; p&lt; 2^{*}= \\frac{2N}{N-2}\\)</span> for <span>\\( N\\ge 3\\)</span> and <span>\\(2_{**}= \\infty \\)</span> for <span>\\(N=3\\)</span>, <span>\\(N=4\\)</span>, <span>\\(2_{**}= \\frac{2N}{N-4}\\)</span> for <span>\\(N\\ge 5\\)</span>. The first one is concerned with the existence of a nontrivial ground-state solution via variational methods. As for the second problem, we prove the multiplicity of such a solution using the Mountain Pass Theorem.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and Multiplicity of Solutions for a Class of Kirchhoff–Boussinesq-Type Problems with Logarithmic Growth\",\"authors\":\"Romulo D. Carlos, Lamine Mbarki, Shuang Yang\",\"doi\":\"10.1007/s00009-024-02649-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, two problems related to the following class of elliptic Kirchhoff–Boussinesq-type models are analyzed in the subcritical (<span>\\\\(\\\\beta =0\\\\)</span>) and critical (<span>\\\\(\\\\beta =1\\\\)</span>) cases: </p><span>$$\\\\begin{aligned} \\\\Delta ^{2} u \\\\!- \\\\!\\\\Delta _p u \\\\!=\\\\! \\\\tau |u|^{q-2} u{\\\\ln |u|}\\\\!+\\\\!\\\\beta |u|^{2_{**}-2}u\\\\ \\\\text{ in } \\\\ \\\\Omega \\\\ \\\\ \\\\text{ and } \\\\ {\\\\Delta u=u=0} \\\\ \\\\text{ on } \\\\ \\\\ \\\\partial \\\\Omega , \\\\end{aligned}$$</span><p>where <span>\\\\(\\\\tau &gt;0\\\\)</span>, <span>\\\\(2&lt; p&lt; 2^{*}= \\\\frac{2N}{N-2}\\\\)</span> for <span>\\\\( N\\\\ge 3\\\\)</span> and <span>\\\\(2_{**}= \\\\infty \\\\)</span> for <span>\\\\(N=3\\\\)</span>, <span>\\\\(N=4\\\\)</span>, <span>\\\\(2_{**}= \\\\frac{2N}{N-4}\\\\)</span> for <span>\\\\(N\\\\ge 5\\\\)</span>. The first one is concerned with the existence of a nontrivial ground-state solution via variational methods. As for the second problem, we prove the multiplicity of such a solution using the Mountain Pass Theorem.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00009-024-02649-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00009-024-02649-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文在次临界((beta =0))和临界((beta =1))情况下分析了与以下一类椭圆基尔霍夫-布西尼斯克(Kirchhoff-Boussinesq)型模型相关的两个问题:$$\begin{aligned} u \!\Delta ^{2} u \!-\!\Delta _p u \!=\!\tau |u|^{q-2} u{ln |u|}\! +\!\ (Omega) (text{ and }\ {Delta u=u=0}\ on }\ \partial\Omega , \end{aligned}$where\(\tau >0\),\(2< p<;2^{*}= \frac{2N}{N-2}\) for \( N\ge 3\) and \(2_{**}= \infty \) for \(N=3\), \(N=4\), \(2_{**}= \frac{2N}{N-4}\) for \(N\ge 5\).第一个问题是关于通过变分法存在一个非小的基态解。至于第二个问题,我们利用山口定理证明了这种解的多重性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and Multiplicity of Solutions for a Class of Kirchhoff–Boussinesq-Type Problems with Logarithmic Growth

In this paper, two problems related to the following class of elliptic Kirchhoff–Boussinesq-type models are analyzed in the subcritical (\(\beta =0\)) and critical (\(\beta =1\)) cases:

$$\begin{aligned} \Delta ^{2} u \!- \!\Delta _p u \!=\! \tau |u|^{q-2} u{\ln |u|}\!+\!\beta |u|^{2_{**}-2}u\ \text{ in } \ \Omega \ \ \text{ and } \ {\Delta u=u=0} \ \text{ on } \ \ \partial \Omega , \end{aligned}$$

where \(\tau >0\), \(2< p< 2^{*}= \frac{2N}{N-2}\) for \( N\ge 3\) and \(2_{**}= \infty \) for \(N=3\), \(N=4\), \(2_{**}= \frac{2N}{N-4}\) for \(N\ge 5\). The first one is concerned with the existence of a nontrivial ground-state solution via variational methods. As for the second problem, we prove the multiplicity of such a solution using the Mountain Pass Theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信