描述逻辑中的统一 $\mathcal{FL}_\bot$

Barbara Morawska
{"title":"描述逻辑中的统一 $\\mathcal{FL}_\\bot$","authors":"Barbara Morawska","doi":"arxiv-2405.00912","DOIUrl":null,"url":null,"abstract":"Description Logics are a formalism used in the knowledge representation,\nwhere the knowledge is captured in the form of concepts constructed in a\ncontrolled way from a restricted vocabulary. This allows one to test\neffectively for consistency of and the subsumption between the concepts.\nUnification of concepts may likewise become a useful tool in analysing the\nrelations between concepts. The unification problem has been solved for the\ndescription logics $\\mathcal{FL}_0$ and $\\mathcal{EL}$. These small logics do\nnot provide any means to express negation. Here we show an algorithm solving\nunification in $\\mathcal{FL}_\\bot$, the logic that extends $\\mathcal{FL}_0$\nwith the bottom concept. Bottom allows one to express that two concepts are\ndisjoint. Our algorithm runs in exponential time, with respect to the size of\nthe problem.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unification in the description logic $\\\\mathcal{FL}_\\\\bot$\",\"authors\":\"Barbara Morawska\",\"doi\":\"arxiv-2405.00912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Description Logics are a formalism used in the knowledge representation,\\nwhere the knowledge is captured in the form of concepts constructed in a\\ncontrolled way from a restricted vocabulary. This allows one to test\\neffectively for consistency of and the subsumption between the concepts.\\nUnification of concepts may likewise become a useful tool in analysing the\\nrelations between concepts. The unification problem has been solved for the\\ndescription logics $\\\\mathcal{FL}_0$ and $\\\\mathcal{EL}$. These small logics do\\nnot provide any means to express negation. Here we show an algorithm solving\\nunification in $\\\\mathcal{FL}_\\\\bot$, the logic that extends $\\\\mathcal{FL}_0$\\nwith the bottom concept. Bottom allows one to express that two concepts are\\ndisjoint. Our algorithm runs in exponential time, with respect to the size of\\nthe problem.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.00912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.00912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

描述逻辑学是一种用于知识表示的形式主义,在这种形式主义中,知识以概念的形式被捕获,这些概念是以受控的方式从一个受限的词汇表中构建出来的。概念的统一同样可以成为分析概念之间关系的有用工具。统一问题已经在描述逻辑$\mathcal{FL}_0$和$\mathcal{EL}$中得到了解决。这些小逻辑没有提供任何表达否定的方法。在这里,我们展示了一种在 $\mathcal{FL}_\bot$ 中求解统一的算法,这种逻辑用底部概念扩展了 $\mathcal{FL}_0$ 。底层概念允许我们表达两个概念是不相交的。我们的算法运行时间与问题的大小成指数关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unification in the description logic $\mathcal{FL}_\bot$
Description Logics are a formalism used in the knowledge representation, where the knowledge is captured in the form of concepts constructed in a controlled way from a restricted vocabulary. This allows one to test effectively for consistency of and the subsumption between the concepts. Unification of concepts may likewise become a useful tool in analysing the relations between concepts. The unification problem has been solved for the description logics $\mathcal{FL}_0$ and $\mathcal{EL}$. These small logics do not provide any means to express negation. Here we show an algorithm solving unification in $\mathcal{FL}_\bot$, the logic that extends $\mathcal{FL}_0$ with the bottom concept. Bottom allows one to express that two concepts are disjoint. Our algorithm runs in exponential time, with respect to the size of the problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信