弱阶单位拱顶向量网格中的足够多投影

Anthony W. Hager, Brian Wynne
{"title":"弱阶单位拱顶向量网格中的足够多投影","authors":"Anthony W. Hager, Brian Wynne","doi":"arxiv-2404.17628","DOIUrl":null,"url":null,"abstract":"The property of a vector lattice of sufficiently many projections (SMP) is\ninformed by restricting attention to archimedean $A$ with a distinguished weak\norder unit $u$ (the class, or category, $\\bf{W}$), where the Yosida\nrepresentation $A \\leq D(Y(A,u))$ is available. Here, $A$ SMP is equivalent to\n$Y(A,u)$ having a $\\pi$-base of clopen sets of a certain type called ``local\".\nIf the unit is strong, all clopen sets are local and $A$ is SMP if and only if\n$Y(A,u)$ has clopen $\\pi$-base, a property we call $\\pi$-zero-dimensional\n($\\pi$ZD). The paper is in two parts: the first explicates the similarities of\nSMP and $\\pi$ZD; the second consists of examples, including $\\pi$ZD but not\nSMP, and constructions of many SMP's which seem scarce in the literature.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sufficiently many projections in archimedean vector lattices with weak order unit\",\"authors\":\"Anthony W. Hager, Brian Wynne\",\"doi\":\"arxiv-2404.17628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The property of a vector lattice of sufficiently many projections (SMP) is\\ninformed by restricting attention to archimedean $A$ with a distinguished weak\\norder unit $u$ (the class, or category, $\\\\bf{W}$), where the Yosida\\nrepresentation $A \\\\leq D(Y(A,u))$ is available. Here, $A$ SMP is equivalent to\\n$Y(A,u)$ having a $\\\\pi$-base of clopen sets of a certain type called ``local\\\".\\nIf the unit is strong, all clopen sets are local and $A$ is SMP if and only if\\n$Y(A,u)$ has clopen $\\\\pi$-base, a property we call $\\\\pi$-zero-dimensional\\n($\\\\pi$ZD). The paper is in two parts: the first explicates the similarities of\\nSMP and $\\\\pi$ZD; the second consists of examples, including $\\\\pi$ZD but not\\nSMP, and constructions of many SMP's which seem scarce in the literature.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.17628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.17628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

足够多投影向量晶格(SMP)的性质是通过将注意力限制在具有区分弱阶单元$u$(类或范畴,$\bf{W}$)的阿基米德$A$,其中有Yosidarepresentation $A \leq D(Y(A,u))$ 而得到的。在这里,$A$ SMP等价于$Y(A,u)$有一个被称为 "局部 "的某种类型的开集的(clopen)$\pi$-base。如果单位是强的,所有开集都是局部的,并且当且仅当$Y(A,u)$有开集的(clopen)$\pi$-base时,$A$才是SMP,我们称这种性质为$\pi$-零维($\pi$ZD)。本文分为两部分:第一部分阐述了 SMP 与 $\pi$ZD 的相似性;第二部分包括一些例子,其中包括 $\pi$ZD 但不包括 SMP,以及许多文献中似乎很少见的 SMP 的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sufficiently many projections in archimedean vector lattices with weak order unit
The property of a vector lattice of sufficiently many projections (SMP) is informed by restricting attention to archimedean $A$ with a distinguished weak order unit $u$ (the class, or category, $\bf{W}$), where the Yosida representation $A \leq D(Y(A,u))$ is available. Here, $A$ SMP is equivalent to $Y(A,u)$ having a $\pi$-base of clopen sets of a certain type called ``local". If the unit is strong, all clopen sets are local and $A$ is SMP if and only if $Y(A,u)$ has clopen $\pi$-base, a property we call $\pi$-zero-dimensional ($\pi$ZD). The paper is in two parts: the first explicates the similarities of SMP and $\pi$ZD; the second consists of examples, including $\pi$ZD but not SMP, and constructions of many SMP's which seem scarce in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信