J. Camp, P. Gregory, A. G. Marshall, M. C. Wheeler
{"title":"利用 ACCESS-S2 对北半球热带气旋频率进行多周熟练预测","authors":"J. Camp, P. Gregory, A. G. Marshall, M. C. Wheeler","doi":"10.1002/qj.4738","DOIUrl":null,"url":null,"abstract":"The skill of subseasonal (multiweek) forecasts of tropical‐cyclone (TC) occurrence over the Northern Hemisphere is examined in the Australian Bureau of Meteorology's (BoM) multiweek to seasonal prediction system, ACCESS‐S2. ACCESS‐S2 shows a good representation of the spatial distribution of TCs in the Northern Hemisphere; however, TC track frequency is generally underpredicted in the western North Pacific to the east of the Philippines and in the eastern North Pacific. The reduced activity relative to observations could be due to a significant positive bias in 850–200‐hPa wind shear in both of these regions, as well as a significant negative sea‐surface temperature (SST) bias in the eastern North Pacific. Despite biases in climatological TC frequency, the observed change in TC track frequency across the Northern Hemisphere with the phase of the Madden–Julian Oscillation (MJO) is well captured by ACCESS‐S2. Changes in the large‐scale environment (e.g., precipitation, 600‐hPa relative humidity, 850‐hPa absolute vorticity and 850–200‐hPa wind shear) are also well represented, with the location and size of the anomalies comparable to ERA‐Interim, apart from SST which shows a different response during some phases. ACCESS‐S2 shows skill relative to climatology for multiweek predictions of TC occurrence out to week 5 in the western North Pacific, eastern North Pacific and North Atlantic; and out to week 2 for the North Indian Ocean. Assessment of real‐time forecasts for Typhoon <jats:italic>Rai</jats:italic> (December 2021) showed that ACCESS‐S2 provided good guidance of the development and potential landfall of a TC in the Philippines at four weeks lead time.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":"23 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skilful multiweek predictions of tropical‐cyclone frequency in the Northern Hemisphere using ACCESS‐S2\",\"authors\":\"J. Camp, P. Gregory, A. G. Marshall, M. C. Wheeler\",\"doi\":\"10.1002/qj.4738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The skill of subseasonal (multiweek) forecasts of tropical‐cyclone (TC) occurrence over the Northern Hemisphere is examined in the Australian Bureau of Meteorology's (BoM) multiweek to seasonal prediction system, ACCESS‐S2. ACCESS‐S2 shows a good representation of the spatial distribution of TCs in the Northern Hemisphere; however, TC track frequency is generally underpredicted in the western North Pacific to the east of the Philippines and in the eastern North Pacific. The reduced activity relative to observations could be due to a significant positive bias in 850–200‐hPa wind shear in both of these regions, as well as a significant negative sea‐surface temperature (SST) bias in the eastern North Pacific. Despite biases in climatological TC frequency, the observed change in TC track frequency across the Northern Hemisphere with the phase of the Madden–Julian Oscillation (MJO) is well captured by ACCESS‐S2. Changes in the large‐scale environment (e.g., precipitation, 600‐hPa relative humidity, 850‐hPa absolute vorticity and 850–200‐hPa wind shear) are also well represented, with the location and size of the anomalies comparable to ERA‐Interim, apart from SST which shows a different response during some phases. ACCESS‐S2 shows skill relative to climatology for multiweek predictions of TC occurrence out to week 5 in the western North Pacific, eastern North Pacific and North Atlantic; and out to week 2 for the North Indian Ocean. Assessment of real‐time forecasts for Typhoon <jats:italic>Rai</jats:italic> (December 2021) showed that ACCESS‐S2 provided good guidance of the development and potential landfall of a TC in the Philippines at four weeks lead time.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4738\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4738","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Skilful multiweek predictions of tropical‐cyclone frequency in the Northern Hemisphere using ACCESS‐S2
The skill of subseasonal (multiweek) forecasts of tropical‐cyclone (TC) occurrence over the Northern Hemisphere is examined in the Australian Bureau of Meteorology's (BoM) multiweek to seasonal prediction system, ACCESS‐S2. ACCESS‐S2 shows a good representation of the spatial distribution of TCs in the Northern Hemisphere; however, TC track frequency is generally underpredicted in the western North Pacific to the east of the Philippines and in the eastern North Pacific. The reduced activity relative to observations could be due to a significant positive bias in 850–200‐hPa wind shear in both of these regions, as well as a significant negative sea‐surface temperature (SST) bias in the eastern North Pacific. Despite biases in climatological TC frequency, the observed change in TC track frequency across the Northern Hemisphere with the phase of the Madden–Julian Oscillation (MJO) is well captured by ACCESS‐S2. Changes in the large‐scale environment (e.g., precipitation, 600‐hPa relative humidity, 850‐hPa absolute vorticity and 850–200‐hPa wind shear) are also well represented, with the location and size of the anomalies comparable to ERA‐Interim, apart from SST which shows a different response during some phases. ACCESS‐S2 shows skill relative to climatology for multiweek predictions of TC occurrence out to week 5 in the western North Pacific, eastern North Pacific and North Atlantic; and out to week 2 for the North Indian Ocean. Assessment of real‐time forecasts for Typhoon Rai (December 2021) showed that ACCESS‐S2 provided good guidance of the development and potential landfall of a TC in the Philippines at four weeks lead time.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.