三维西尔平斯基垫圈上的正交指数函数

IF 0.7 4区 数学 Q2 MATHEMATICS
Zhi-Min Wang
{"title":"三维西尔平斯基垫圈上的正交指数函数","authors":"Zhi-Min Wang","doi":"10.1007/s11785-024-01536-y","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\xi \\in \\mathbb {R}\\)</span>, and <span>\\(\\rho _i\\in \\mathbb {R}\\)</span> with <span>\\(0&lt;|\\rho _i|&lt;1\\)</span> for <span>\\(1\\le i\\le 3\\)</span>. For an expanding real matrix </p><span>$$\\begin{aligned} M=\\begin{bmatrix} \\rho _1^{-1}&amp;{}0&amp;{}\\xi \\\\ 0&amp;{}\\rho _2^{-1}&amp;{}-\\xi \\\\ 0&amp;{}0&amp;{}\\rho _3^{-1} \\end{bmatrix}\\in M_3(\\mathbb {R}) \\end{aligned}$$</span><p>and an integer digit set <span>\\(D=\\{(0,0,0)^t, (1,0,0)^t, (0,1,0)^t, (0,0,1)^t \\}\\subset \\mathbb {Z}^3\\)</span>, let <span>\\(\\mu _{M,D}\\)</span> be the self-affine measure defined by <span>\\(\\mu _{M,D}(\\cdot )=\\frac{1}{|D|}\\sum _{d\\in D}\\mu _{M,D}(M(\\cdot )-d)\\)</span>. In this paper, we prove that if <span>\\(\\rho _1=\\rho _2\\)</span>, then <span>\\(L^2(\\mu _{M,D})\\)</span> admits an infinite orthogonal set of exponential functions if and only if <span>\\(|\\rho _i|=(p_i/q_i)^{\\frac{1}{r_i}}\\)</span> for some <span>\\(p_i,q_i,r_i\\in \\mathbb {N}^+\\)</span> with <span>\\(\\gcd (p_i,q_i)=1\\)</span> and <span>\\(2|q_i\\)</span>, <span>\\(i=1,2\\)</span>. In particular, if <span>\\(\\rho _1,\\rho _2,\\rho _3\\in \\{\\frac{p}{q}:p,q\\in 2\\mathbb {Z}+1\\}\\)</span> and <span>\\(\\rho _1=\\rho _2\\)</span>, then there exist at most 4 mutually orthogonal exponential functions in <span>\\(L^2(\\mu _{M,D})\\)</span>, and the number 4 is the best.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"46 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orthogonal Exponential Functions on the Three-Dimensional Sierpinski Gasket\",\"authors\":\"Zhi-Min Wang\",\"doi\":\"10.1007/s11785-024-01536-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\xi \\\\in \\\\mathbb {R}\\\\)</span>, and <span>\\\\(\\\\rho _i\\\\in \\\\mathbb {R}\\\\)</span> with <span>\\\\(0&lt;|\\\\rho _i|&lt;1\\\\)</span> for <span>\\\\(1\\\\le i\\\\le 3\\\\)</span>. For an expanding real matrix </p><span>$$\\\\begin{aligned} M=\\\\begin{bmatrix} \\\\rho _1^{-1}&amp;{}0&amp;{}\\\\xi \\\\\\\\ 0&amp;{}\\\\rho _2^{-1}&amp;{}-\\\\xi \\\\\\\\ 0&amp;{}0&amp;{}\\\\rho _3^{-1} \\\\end{bmatrix}\\\\in M_3(\\\\mathbb {R}) \\\\end{aligned}$$</span><p>and an integer digit set <span>\\\\(D=\\\\{(0,0,0)^t, (1,0,0)^t, (0,1,0)^t, (0,0,1)^t \\\\}\\\\subset \\\\mathbb {Z}^3\\\\)</span>, let <span>\\\\(\\\\mu _{M,D}\\\\)</span> be the self-affine measure defined by <span>\\\\(\\\\mu _{M,D}(\\\\cdot )=\\\\frac{1}{|D|}\\\\sum _{d\\\\in D}\\\\mu _{M,D}(M(\\\\cdot )-d)\\\\)</span>. In this paper, we prove that if <span>\\\\(\\\\rho _1=\\\\rho _2\\\\)</span>, then <span>\\\\(L^2(\\\\mu _{M,D})\\\\)</span> admits an infinite orthogonal set of exponential functions if and only if <span>\\\\(|\\\\rho _i|=(p_i/q_i)^{\\\\frac{1}{r_i}}\\\\)</span> for some <span>\\\\(p_i,q_i,r_i\\\\in \\\\mathbb {N}^+\\\\)</span> with <span>\\\\(\\\\gcd (p_i,q_i)=1\\\\)</span> and <span>\\\\(2|q_i\\\\)</span>, <span>\\\\(i=1,2\\\\)</span>. In particular, if <span>\\\\(\\\\rho _1,\\\\rho _2,\\\\rho _3\\\\in \\\\{\\\\frac{p}{q}:p,q\\\\in 2\\\\mathbb {Z}+1\\\\}\\\\)</span> and <span>\\\\(\\\\rho _1=\\\\rho _2\\\\)</span>, then there exist at most 4 mutually orthogonal exponential functions in <span>\\\\(L^2(\\\\mu _{M,D})\\\\)</span>, and the number 4 is the best.</p>\",\"PeriodicalId\":50654,\"journal\":{\"name\":\"Complex Analysis and Operator Theory\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Analysis and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01536-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01536-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\xi \in \mathbb {R}\), and\(\rho _i\in \mathbb {R}\) with \(0<|\rho _i|<1\) for \(1\le i\le 3\).对于扩展实矩阵 $$\begin{aligned}M= (开始)\rho _1^{-1}&{}0&{}\xi\0&{}\rho _2^{-1}&{}-\xi\0&{}0&;{}\rho _3^{-1} \end{bmatrix}\in M_3(\mathbb {R}) \end{aligned}$$ and an integer digit set \(D=\{(0,0,0)^t, (1,0,0)^t, (0,1,0)^t, (0,0、1)^t \}子集 \mathbb {Z}^3\), let \(\mu _{M,D}\) be the self-affine measure defined by \(\mu _{M,D}(\cdot )=\frac{1}{|D||}\sum _{d\in D}\mu _{M,D}(M(\cdot )-d)\).在本文中,我们证明如果 \(\rho _1=\rho _2\),那么 \(L^2(\mu _{M,D})\) 允许一个无限正交的指数函数集,当且仅当\(|/rho _i|=(p_i/q_i)^{\frac{1}{r_i}}\) for some \(p_i、q_i,r_i\in \mathbb {N}^+\) with \(\gcd (p_i,q_i)=1\) and \(2|q_i\), \(i=1,2\).特别是,如果 \(\rho _1,\rho _2,\rho _3\in \{frac{p}{q}:p,q\in 2\mathbb {Z}+1\}\) 并且 \(\rho _1=\rho _2/),那么在 \(L^2(\mu _{M,D})\) 中最多存在 4 个相互正交的指数函数,而数字 4 是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthogonal Exponential Functions on the Three-Dimensional Sierpinski Gasket

Let \(\xi \in \mathbb {R}\), and \(\rho _i\in \mathbb {R}\) with \(0<|\rho _i|<1\) for \(1\le i\le 3\). For an expanding real matrix

$$\begin{aligned} M=\begin{bmatrix} \rho _1^{-1}&{}0&{}\xi \\ 0&{}\rho _2^{-1}&{}-\xi \\ 0&{}0&{}\rho _3^{-1} \end{bmatrix}\in M_3(\mathbb {R}) \end{aligned}$$

and an integer digit set \(D=\{(0,0,0)^t, (1,0,0)^t, (0,1,0)^t, (0,0,1)^t \}\subset \mathbb {Z}^3\), let \(\mu _{M,D}\) be the self-affine measure defined by \(\mu _{M,D}(\cdot )=\frac{1}{|D|}\sum _{d\in D}\mu _{M,D}(M(\cdot )-d)\). In this paper, we prove that if \(\rho _1=\rho _2\), then \(L^2(\mu _{M,D})\) admits an infinite orthogonal set of exponential functions if and only if \(|\rho _i|=(p_i/q_i)^{\frac{1}{r_i}}\) for some \(p_i,q_i,r_i\in \mathbb {N}^+\) with \(\gcd (p_i,q_i)=1\) and \(2|q_i\), \(i=1,2\). In particular, if \(\rho _1,\rho _2,\rho _3\in \{\frac{p}{q}:p,q\in 2\mathbb {Z}+1\}\) and \(\rho _1=\rho _2\), then there exist at most 4 mutually orthogonal exponential functions in \(L^2(\mu _{M,D})\), and the number 4 is the best.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信