{"title":"三维西尔平斯基垫圈上的正交指数函数","authors":"Zhi-Min Wang","doi":"10.1007/s11785-024-01536-y","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\xi \\in \\mathbb {R}\\)</span>, and <span>\\(\\rho _i\\in \\mathbb {R}\\)</span> with <span>\\(0<|\\rho _i|<1\\)</span> for <span>\\(1\\le i\\le 3\\)</span>. For an expanding real matrix </p><span>$$\\begin{aligned} M=\\begin{bmatrix} \\rho _1^{-1}&{}0&{}\\xi \\\\ 0&{}\\rho _2^{-1}&{}-\\xi \\\\ 0&{}0&{}\\rho _3^{-1} \\end{bmatrix}\\in M_3(\\mathbb {R}) \\end{aligned}$$</span><p>and an integer digit set <span>\\(D=\\{(0,0,0)^t, (1,0,0)^t, (0,1,0)^t, (0,0,1)^t \\}\\subset \\mathbb {Z}^3\\)</span>, let <span>\\(\\mu _{M,D}\\)</span> be the self-affine measure defined by <span>\\(\\mu _{M,D}(\\cdot )=\\frac{1}{|D|}\\sum _{d\\in D}\\mu _{M,D}(M(\\cdot )-d)\\)</span>. In this paper, we prove that if <span>\\(\\rho _1=\\rho _2\\)</span>, then <span>\\(L^2(\\mu _{M,D})\\)</span> admits an infinite orthogonal set of exponential functions if and only if <span>\\(|\\rho _i|=(p_i/q_i)^{\\frac{1}{r_i}}\\)</span> for some <span>\\(p_i,q_i,r_i\\in \\mathbb {N}^+\\)</span> with <span>\\(\\gcd (p_i,q_i)=1\\)</span> and <span>\\(2|q_i\\)</span>, <span>\\(i=1,2\\)</span>. In particular, if <span>\\(\\rho _1,\\rho _2,\\rho _3\\in \\{\\frac{p}{q}:p,q\\in 2\\mathbb {Z}+1\\}\\)</span> and <span>\\(\\rho _1=\\rho _2\\)</span>, then there exist at most 4 mutually orthogonal exponential functions in <span>\\(L^2(\\mu _{M,D})\\)</span>, and the number 4 is the best.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orthogonal Exponential Functions on the Three-Dimensional Sierpinski Gasket\",\"authors\":\"Zhi-Min Wang\",\"doi\":\"10.1007/s11785-024-01536-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\xi \\\\in \\\\mathbb {R}\\\\)</span>, and <span>\\\\(\\\\rho _i\\\\in \\\\mathbb {R}\\\\)</span> with <span>\\\\(0<|\\\\rho _i|<1\\\\)</span> for <span>\\\\(1\\\\le i\\\\le 3\\\\)</span>. For an expanding real matrix </p><span>$$\\\\begin{aligned} M=\\\\begin{bmatrix} \\\\rho _1^{-1}&{}0&{}\\\\xi \\\\\\\\ 0&{}\\\\rho _2^{-1}&{}-\\\\xi \\\\\\\\ 0&{}0&{}\\\\rho _3^{-1} \\\\end{bmatrix}\\\\in M_3(\\\\mathbb {R}) \\\\end{aligned}$$</span><p>and an integer digit set <span>\\\\(D=\\\\{(0,0,0)^t, (1,0,0)^t, (0,1,0)^t, (0,0,1)^t \\\\}\\\\subset \\\\mathbb {Z}^3\\\\)</span>, let <span>\\\\(\\\\mu _{M,D}\\\\)</span> be the self-affine measure defined by <span>\\\\(\\\\mu _{M,D}(\\\\cdot )=\\\\frac{1}{|D|}\\\\sum _{d\\\\in D}\\\\mu _{M,D}(M(\\\\cdot )-d)\\\\)</span>. In this paper, we prove that if <span>\\\\(\\\\rho _1=\\\\rho _2\\\\)</span>, then <span>\\\\(L^2(\\\\mu _{M,D})\\\\)</span> admits an infinite orthogonal set of exponential functions if and only if <span>\\\\(|\\\\rho _i|=(p_i/q_i)^{\\\\frac{1}{r_i}}\\\\)</span> for some <span>\\\\(p_i,q_i,r_i\\\\in \\\\mathbb {N}^+\\\\)</span> with <span>\\\\(\\\\gcd (p_i,q_i)=1\\\\)</span> and <span>\\\\(2|q_i\\\\)</span>, <span>\\\\(i=1,2\\\\)</span>. In particular, if <span>\\\\(\\\\rho _1,\\\\rho _2,\\\\rho _3\\\\in \\\\{\\\\frac{p}{q}:p,q\\\\in 2\\\\mathbb {Z}+1\\\\}\\\\)</span> and <span>\\\\(\\\\rho _1=\\\\rho _2\\\\)</span>, then there exist at most 4 mutually orthogonal exponential functions in <span>\\\\(L^2(\\\\mu _{M,D})\\\\)</span>, and the number 4 is the best.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01536-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01536-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 \(\xi \in \mathbb {R}\), and\(\rho _i\in \mathbb {R}\) with \(0<|\rho _i|<1\) for \(1\le i\le 3\).对于扩展实矩阵 $$\begin{aligned}M= (开始)\rho _1^{-1}&{}0&{}\xi\0&{}\rho _2^{-1}&{}-\xi\0&{}0&;{}\rho _3^{-1} \end{bmatrix}\in M_3(\mathbb {R}) \end{aligned}$$ and an integer digit set \(D=\{(0,0,0)^t, (1,0,0)^t, (0,1,0)^t, (0,0、1)^t \}子集 \mathbb {Z}^3\), let \(\mu _{M,D}\) be the self-affine measure defined by \(\mu _{M,D}(\cdot )=\frac{1}{|D||}\sum _{d\in D}\mu _{M,D}(M(\cdot )-d)\).在本文中,我们证明如果 \(\rho _1=\rho _2\),那么 \(L^2(\mu _{M,D})\) 允许一个无限正交的指数函数集,当且仅当\(|/rho _i|=(p_i/q_i)^{\frac{1}{r_i}}\) for some \(p_i、q_i,r_i\in \mathbb {N}^+\) with \(\gcd (p_i,q_i)=1\) and \(2|q_i\), \(i=1,2\).特别是,如果 \(\rho _1,\rho _2,\rho _3\in \{frac{p}{q}:p,q\in 2\mathbb {Z}+1\}\) 并且 \(\rho _1=\rho _2/),那么在 \(L^2(\mu _{M,D})\) 中最多存在 4 个相互正交的指数函数,而数字 4 是最好的。
and an integer digit set \(D=\{(0,0,0)^t, (1,0,0)^t, (0,1,0)^t, (0,0,1)^t \}\subset \mathbb {Z}^3\), let \(\mu _{M,D}\) be the self-affine measure defined by \(\mu _{M,D}(\cdot )=\frac{1}{|D|}\sum _{d\in D}\mu _{M,D}(M(\cdot )-d)\). In this paper, we prove that if \(\rho _1=\rho _2\), then \(L^2(\mu _{M,D})\) admits an infinite orthogonal set of exponential functions if and only if \(|\rho _i|=(p_i/q_i)^{\frac{1}{r_i}}\) for some \(p_i,q_i,r_i\in \mathbb {N}^+\) with \(\gcd (p_i,q_i)=1\) and \(2|q_i\), \(i=1,2\). In particular, if \(\rho _1,\rho _2,\rho _3\in \{\frac{p}{q}:p,q\in 2\mathbb {Z}+1\}\) and \(\rho _1=\rho _2\), then there exist at most 4 mutually orthogonal exponential functions in \(L^2(\mu _{M,D})\), and the number 4 is the best.