无穷符号情况下克利福德单原函数的共形不变性

Pub Date : 2024-04-29 DOI:10.1007/s11785-024-01528-y
Chen Liang, Matvei Libine
{"title":"无穷符号情况下克利福德单原函数的共形不变性","authors":"Chen Liang, Matvei Libine","doi":"10.1007/s11785-024-01528-y","DOIUrl":null,"url":null,"abstract":"<p>We extend constructions of classical Clifford analysis to the case of indefinite non-degenerate quadratic forms. Clifford analogues of complex holomorphic functions—called monogenic functions—are defined by means of the Dirac operators that factor a certain wave operator. One of the fundamental features of quaternionic analysis is the invariance of quaternionic analogues of holomorphic function under conformal (or Möbius) transformations. A similar invariance property is known to hold in the context of Clifford algebras associated to positive definite quadratic forms. We generalize these results to the case of Clifford algebras associated to all non-degenerate quadratic forms. This result puts the indefinite signature case on the same footing as the classical positive definite case.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal Invariance of Clifford Monogenic Functions in the Indefinite Signature Case\",\"authors\":\"Chen Liang, Matvei Libine\",\"doi\":\"10.1007/s11785-024-01528-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We extend constructions of classical Clifford analysis to the case of indefinite non-degenerate quadratic forms. Clifford analogues of complex holomorphic functions—called monogenic functions—are defined by means of the Dirac operators that factor a certain wave operator. One of the fundamental features of quaternionic analysis is the invariance of quaternionic analogues of holomorphic function under conformal (or Möbius) transformations. A similar invariance property is known to hold in the context of Clifford algebras associated to positive definite quadratic forms. We generalize these results to the case of Clifford algebras associated to all non-degenerate quadratic forms. This result puts the indefinite signature case on the same footing as the classical positive definite case.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01528-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01528-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将经典克利福德分析的构造扩展到不定非退化二次型的情况。复全形函数的克利福德类似物--即所谓的单原函数--是通过对某个波算子进行因式分解的狄拉克算子定义的。四元分析的基本特征之一是全形函数的四元类似物在保角(或莫比乌斯)变换下的不变性。已知在与正定二次型相关的克利福德代数中也有类似的不变性。我们将这些结果推广到与所有非退化二次型相关联的克利福德布拉斯。这一结果使不定签名情况与经典的正定情况具有相同的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Conformal Invariance of Clifford Monogenic Functions in the Indefinite Signature Case

We extend constructions of classical Clifford analysis to the case of indefinite non-degenerate quadratic forms. Clifford analogues of complex holomorphic functions—called monogenic functions—are defined by means of the Dirac operators that factor a certain wave operator. One of the fundamental features of quaternionic analysis is the invariance of quaternionic analogues of holomorphic function under conformal (or Möbius) transformations. A similar invariance property is known to hold in the context of Clifford algebras associated to positive definite quadratic forms. We generalize these results to the case of Clifford algebras associated to all non-degenerate quadratic forms. This result puts the indefinite signature case on the same footing as the classical positive definite case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信