{"title":"以鳞鳃亚纲动物为模型,将古生物学研究与保护优先事项相结合","authors":"Erin M. Dillon, Catalina Pimiento","doi":"10.1017/pab.2024.11","DOIUrl":null,"url":null,"abstract":"Humans have dramatically transformed ecosystems over the previous millennia and are potentially causing a mass extinction event comparable to the others that shaped the history of life. However, only a fraction of these impacts has been directly recorded, limiting conservation actions. Conservation paleobiology leverages geohistorical records to offer a long-term perspective on biodiversity change in the face of anthropogenic stressors. Nevertheless, the field's on-the-ground contributions to conservation outcomes are still developing. Here, we present an overview of directions in which paleobiological research could progress to aid conservation in the coming decades using elasmobranchs (sharks, rays, and skates)—a highly threatened group with a rich fossil record—as a model. These research directions are guided by areas of overlap between an expert-led list of current elasmobranch conservation priorities and available fossil and historical records. Four research topics emerged for which paleobiological research could address open questions in elasmobranch science and conservation: (1) baselines, (2) ecological roles, (3) threats, and (4) conservation priorities. Increasingly rich datasets and novel analytical frameworks present exciting opportunities to apply the elasmobranch fossil record to conservation practice. A similar approach could be extended to other clades. Given the synthetic nature of these research topics, we encourage collaboration across timescales and with conservation practitioners to safeguard the future of our planet's rapidly disappearing species.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aligning paleobiological research with conservation priorities using elasmobranchs as a model\",\"authors\":\"Erin M. Dillon, Catalina Pimiento\",\"doi\":\"10.1017/pab.2024.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humans have dramatically transformed ecosystems over the previous millennia and are potentially causing a mass extinction event comparable to the others that shaped the history of life. However, only a fraction of these impacts has been directly recorded, limiting conservation actions. Conservation paleobiology leverages geohistorical records to offer a long-term perspective on biodiversity change in the face of anthropogenic stressors. Nevertheless, the field's on-the-ground contributions to conservation outcomes are still developing. Here, we present an overview of directions in which paleobiological research could progress to aid conservation in the coming decades using elasmobranchs (sharks, rays, and skates)—a highly threatened group with a rich fossil record—as a model. These research directions are guided by areas of overlap between an expert-led list of current elasmobranch conservation priorities and available fossil and historical records. Four research topics emerged for which paleobiological research could address open questions in elasmobranch science and conservation: (1) baselines, (2) ecological roles, (3) threats, and (4) conservation priorities. Increasingly rich datasets and novel analytical frameworks present exciting opportunities to apply the elasmobranch fossil record to conservation practice. A similar approach could be extended to other clades. Given the synthetic nature of these research topics, we encourage collaboration across timescales and with conservation practitioners to safeguard the future of our planet's rapidly disappearing species.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/pab.2024.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/pab.2024.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Aligning paleobiological research with conservation priorities using elasmobranchs as a model
Humans have dramatically transformed ecosystems over the previous millennia and are potentially causing a mass extinction event comparable to the others that shaped the history of life. However, only a fraction of these impacts has been directly recorded, limiting conservation actions. Conservation paleobiology leverages geohistorical records to offer a long-term perspective on biodiversity change in the face of anthropogenic stressors. Nevertheless, the field's on-the-ground contributions to conservation outcomes are still developing. Here, we present an overview of directions in which paleobiological research could progress to aid conservation in the coming decades using elasmobranchs (sharks, rays, and skates)—a highly threatened group with a rich fossil record—as a model. These research directions are guided by areas of overlap between an expert-led list of current elasmobranch conservation priorities and available fossil and historical records. Four research topics emerged for which paleobiological research could address open questions in elasmobranch science and conservation: (1) baselines, (2) ecological roles, (3) threats, and (4) conservation priorities. Increasingly rich datasets and novel analytical frameworks present exciting opportunities to apply the elasmobranch fossil record to conservation practice. A similar approach could be extended to other clades. Given the synthetic nature of these research topics, we encourage collaboration across timescales and with conservation practitioners to safeguard the future of our planet's rapidly disappearing species.