零维 O(N) 模型中的小 N 序列:构造展开与跨序列

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Dario Benedetti, Razvan Gurau, Hannes Keppler, Davide Lettera
{"title":"零维 O(N) 模型中的小 N 序列:构造展开与跨序列","authors":"Dario Benedetti,&nbsp;Razvan Gurau,&nbsp;Hannes Keppler,&nbsp;Davide Lettera","doi":"10.1007/s00023-024-01437-y","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the zero-dimensional quartic <i>O</i>(<i>N</i>) vector model and present a complete study of the partition function <i>Z</i>(<i>g</i>, <i>N</i>) and its logarithm, the free energy <i>W</i>(<i>g</i>, <i>N</i>), seen as functions of the coupling <i>g</i> on a Riemann surface. We are, in particular, interested in the study of the transseries expansions of these quantities. The point of this paper is to recover such results using constructive field theory techniques with the aim to use them in the future for a rigorous analysis of resurgence in genuine quantum field theoretical models in higher dimensions. Using constructive field theory techniques, we prove that both <i>Z</i>(<i>g</i>, <i>N</i>) and <i>W</i>(<i>g</i>, <i>N</i>) are Borel summable functions along all the rays in the cut complex plane <span>\\(\\mathbb {C}_{\\pi } =\\mathbb {C}{\\setminus } \\mathbb {R}_-\\)</span>. We recover the transseries expansion of <i>Z</i>(<i>g</i>, <i>N</i>) using the intermediate field representation. We furthermore study the small-<i>N</i> expansions of <i>Z</i>(<i>g</i>, <i>N</i>) and <i>W</i>(<i>g</i>, <i>N</i>). For any <span>\\(g=|g| e^{\\imath \\varphi }\\)</span> on the sector of the Riemann surface with <span>\\(|\\varphi |&lt;3\\pi /2\\)</span>, the small-<i>N</i> expansion of <i>Z</i>(<i>g</i>, <i>N</i>) has infinite radius of convergence in <i>N</i>, while the expansion of <i>W</i>(<i>g</i>, <i>N</i>) has a finite radius of convergence in <i>N</i> for <i>g</i> in a subdomain of the same sector. The Taylor coefficients of these expansions, <span>\\(Z_n(g)\\)</span> and <span>\\(W_n(g)\\)</span>, exhibit analytic properties similar to <i>Z</i>(<i>g</i>, <i>N</i>) and <i>W</i>(<i>g</i>, <i>N</i>) and have transseries expansions. The transseries expansion of <span>\\(Z_n(g)\\)</span> is readily accessible: much like <i>Z</i>(<i>g</i>, <i>N</i>), for any <i>n</i>, <span>\\(Z_n(g)\\)</span> has a zero- and a one-instanton contribution. The transseries of <span>\\(W_n(g)\\)</span> is obtained using Möbius inversion, and summing these transseries yields the transseries expansion of <i>W</i>(<i>g</i>, <i>N</i>). The transseries of <span>\\(W_n(g)\\)</span> and <i>W</i>(<i>g</i>, <i>N</i>) are markedly different: while <i>W</i>(<i>g</i>, <i>N</i>) displays contributions from arbitrarily many multi-instantons, <span>\\(W_n(g)\\)</span> exhibits contributions of only up to <i>n</i>-instanton sectors.\n</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"25 12","pages":"5367 - 5428"},"PeriodicalIF":1.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00023-024-01437-y.pdf","citationCount":"0","resultStr":"{\"title\":\"The Small-N Series in the Zero-Dimensional O(N) Model: Constructive Expansions and Transseries\",\"authors\":\"Dario Benedetti,&nbsp;Razvan Gurau,&nbsp;Hannes Keppler,&nbsp;Davide Lettera\",\"doi\":\"10.1007/s00023-024-01437-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the zero-dimensional quartic <i>O</i>(<i>N</i>) vector model and present a complete study of the partition function <i>Z</i>(<i>g</i>, <i>N</i>) and its logarithm, the free energy <i>W</i>(<i>g</i>, <i>N</i>), seen as functions of the coupling <i>g</i> on a Riemann surface. We are, in particular, interested in the study of the transseries expansions of these quantities. The point of this paper is to recover such results using constructive field theory techniques with the aim to use them in the future for a rigorous analysis of resurgence in genuine quantum field theoretical models in higher dimensions. Using constructive field theory techniques, we prove that both <i>Z</i>(<i>g</i>, <i>N</i>) and <i>W</i>(<i>g</i>, <i>N</i>) are Borel summable functions along all the rays in the cut complex plane <span>\\\\(\\\\mathbb {C}_{\\\\pi } =\\\\mathbb {C}{\\\\setminus } \\\\mathbb {R}_-\\\\)</span>. We recover the transseries expansion of <i>Z</i>(<i>g</i>, <i>N</i>) using the intermediate field representation. We furthermore study the small-<i>N</i> expansions of <i>Z</i>(<i>g</i>, <i>N</i>) and <i>W</i>(<i>g</i>, <i>N</i>). For any <span>\\\\(g=|g| e^{\\\\imath \\\\varphi }\\\\)</span> on the sector of the Riemann surface with <span>\\\\(|\\\\varphi |&lt;3\\\\pi /2\\\\)</span>, the small-<i>N</i> expansion of <i>Z</i>(<i>g</i>, <i>N</i>) has infinite radius of convergence in <i>N</i>, while the expansion of <i>W</i>(<i>g</i>, <i>N</i>) has a finite radius of convergence in <i>N</i> for <i>g</i> in a subdomain of the same sector. The Taylor coefficients of these expansions, <span>\\\\(Z_n(g)\\\\)</span> and <span>\\\\(W_n(g)\\\\)</span>, exhibit analytic properties similar to <i>Z</i>(<i>g</i>, <i>N</i>) and <i>W</i>(<i>g</i>, <i>N</i>) and have transseries expansions. The transseries expansion of <span>\\\\(Z_n(g)\\\\)</span> is readily accessible: much like <i>Z</i>(<i>g</i>, <i>N</i>), for any <i>n</i>, <span>\\\\(Z_n(g)\\\\)</span> has a zero- and a one-instanton contribution. The transseries of <span>\\\\(W_n(g)\\\\)</span> is obtained using Möbius inversion, and summing these transseries yields the transseries expansion of <i>W</i>(<i>g</i>, <i>N</i>). The transseries of <span>\\\\(W_n(g)\\\\)</span> and <i>W</i>(<i>g</i>, <i>N</i>) are markedly different: while <i>W</i>(<i>g</i>, <i>N</i>) displays contributions from arbitrarily many multi-instantons, <span>\\\\(W_n(g)\\\\)</span> exhibits contributions of only up to <i>n</i>-instanton sectors.\\n</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"25 12\",\"pages\":\"5367 - 5428\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00023-024-01437-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-024-01437-y\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01437-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了零维四元 O(N) 矢量模型,并对作为黎曼曲面上耦合 g 的函数的分割函数 Z(g, N) 及其对数自由能 W(g, N) 进行了完整的研究。我们尤其有兴趣研究这些量的跨序列展开。本文的重点是利用构造场论技术恢复这些结果,目的是将来用它们来严格分析真正的量子场论模型在更高维度上的恢复。利用构造场论技术,我们证明了Z(g, N)和W(g, N)都是沿着切复数平面上所有射线的伯累尔可求和函数(\mathbb {C}_\{pi } =\mathbb {C}{\setminus } \mathbb {R}_-\)。我们利用中间场表示恢复了 Z(g, N) 的跨序列展开。我们还将进一步研究 Z(g, N) 和 W(g, N) 的小 N 展开。对于黎曼曲面扇形上任意具有 \(g=|g| e^{\imath \varphi }\) 的 \(|\varphi |<3\pi /2\),Z(g, N)的小-N展开在N内具有无限收敛半径,而对于同一扇形的子域中的g,W(g, N)的展开在N内具有有限收敛半径。这些展开的泰勒系数(\(Z_n(g)\)和\(W_n(g)\))表现出与 Z(g,N)和 W(g,N)类似的解析性质,并且具有跨序列展开。\(Z_n(g)\) 的跨序列展开很容易获得:与 Z(g,N)很相似,对于任意 n,\(Z_n(g)\) 有一个零和一个单斯坦顿贡献。使用莫比乌斯反演可以得到 \(W_n(g)\) 的跨序列,将这些跨序列相加就得到了 W(g, N) 的跨序列展开。W(g,N)和W(g,N)的跨序列有明显的不同:W(g,N)显示了来自任意多个多量子的贡献,而\(W_n(g)\)只显示了多达n个量子扇区的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Small-N Series in the Zero-Dimensional O(N) Model: Constructive Expansions and Transseries

The Small-N Series in the Zero-Dimensional O(N) Model: Constructive Expansions and Transseries

We consider the zero-dimensional quartic O(N) vector model and present a complete study of the partition function Z(gN) and its logarithm, the free energy W(gN), seen as functions of the coupling g on a Riemann surface. We are, in particular, interested in the study of the transseries expansions of these quantities. The point of this paper is to recover such results using constructive field theory techniques with the aim to use them in the future for a rigorous analysis of resurgence in genuine quantum field theoretical models in higher dimensions. Using constructive field theory techniques, we prove that both Z(gN) and W(gN) are Borel summable functions along all the rays in the cut complex plane \(\mathbb {C}_{\pi } =\mathbb {C}{\setminus } \mathbb {R}_-\). We recover the transseries expansion of Z(gN) using the intermediate field representation. We furthermore study the small-N expansions of Z(gN) and W(gN). For any \(g=|g| e^{\imath \varphi }\) on the sector of the Riemann surface with \(|\varphi |<3\pi /2\), the small-N expansion of Z(gN) has infinite radius of convergence in N, while the expansion of W(gN) has a finite radius of convergence in N for g in a subdomain of the same sector. The Taylor coefficients of these expansions, \(Z_n(g)\) and \(W_n(g)\), exhibit analytic properties similar to Z(gN) and W(gN) and have transseries expansions. The transseries expansion of \(Z_n(g)\) is readily accessible: much like Z(gN), for any n, \(Z_n(g)\) has a zero- and a one-instanton contribution. The transseries of \(W_n(g)\) is obtained using Möbius inversion, and summing these transseries yields the transseries expansion of W(gN). The transseries of \(W_n(g)\) and W(gN) are markedly different: while W(gN) displays contributions from arbitrarily many multi-instantons, \(W_n(g)\) exhibits contributions of only up to n-instanton sectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信