{"title":"非规则频谱的海灵格距离估计","authors":"M. Taniguchi, Y. Xue","doi":"10.1137/s0040585x97t991805","DOIUrl":null,"url":null,"abstract":"Theory of Probability &Its Applications, Volume 69, Issue 1, Page 150-160, May 2024. <br/> For Gaussian stationary processes, a time series Hellinger distance $T(f,g)$ for spectra $f$ and $g$ is derived. Evaluating $T(f_\\theta,f_{\\theta+h})$ of the form $O(h^\\alpha)$, we give $1/\\alpha$-consistent asymptotics of the maximum likelihood estimator of $\\theta$ for nonregular spectra. For regular spectra, we introduce the minimum Hellinger distance estimator $\\widehat{\\theta}=\\operatorname{arg}\\min_\\theta T(f_\\theta,\\widehat{g}_n)$, where $\\widehat{g}_n$ is a nonparametric spectral density estimator. We show that $\\widehat\\theta$ is asymptotically efficient and more robust than the Whittle estimator. Brief numerical studies are provided.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hellinger Distance Estimation for Nonregular Spectra\",\"authors\":\"M. Taniguchi, Y. Xue\",\"doi\":\"10.1137/s0040585x97t991805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theory of Probability &Its Applications, Volume 69, Issue 1, Page 150-160, May 2024. <br/> For Gaussian stationary processes, a time series Hellinger distance $T(f,g)$ for spectra $f$ and $g$ is derived. Evaluating $T(f_\\\\theta,f_{\\\\theta+h})$ of the form $O(h^\\\\alpha)$, we give $1/\\\\alpha$-consistent asymptotics of the maximum likelihood estimator of $\\\\theta$ for nonregular spectra. For regular spectra, we introduce the minimum Hellinger distance estimator $\\\\widehat{\\\\theta}=\\\\operatorname{arg}\\\\min_\\\\theta T(f_\\\\theta,\\\\widehat{g}_n)$, where $\\\\widehat{g}_n$ is a nonparametric spectral density estimator. We show that $\\\\widehat\\\\theta$ is asymptotically efficient and more robust than the Whittle estimator. Brief numerical studies are provided.\",\"PeriodicalId\":51193,\"journal\":{\"name\":\"Theory of Probability and its Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/s0040585x97t991805\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991805","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Hellinger Distance Estimation for Nonregular Spectra
Theory of Probability &Its Applications, Volume 69, Issue 1, Page 150-160, May 2024. For Gaussian stationary processes, a time series Hellinger distance $T(f,g)$ for spectra $f$ and $g$ is derived. Evaluating $T(f_\theta,f_{\theta+h})$ of the form $O(h^\alpha)$, we give $1/\alpha$-consistent asymptotics of the maximum likelihood estimator of $\theta$ for nonregular spectra. For regular spectra, we introduce the minimum Hellinger distance estimator $\widehat{\theta}=\operatorname{arg}\min_\theta T(f_\theta,\widehat{g}_n)$, where $\widehat{g}_n$ is a nonparametric spectral density estimator. We show that $\widehat\theta$ is asymptotically efficient and more robust than the Whittle estimator. Brief numerical studies are provided.
期刊介绍:
Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.