{"title":"具有总体变化的个性化图像区域检测","authors":"Sanyou Wu, Fuying Wang, Long Feng","doi":"10.1002/sam.11684","DOIUrl":null,"url":null,"abstract":"Medical image data have emerged to be an indispensable component of modern medicine. Different from many general image problems that focus on outcome prediction or image recognition, medical image analysis pays more attention to model interpretation. For instance, given a list of medical images and corresponding labels of patients' health status, it is often of greater importance to identify the image regions that could differentiate the outcome status, compared to simply predicting labels of new images. Moreover, medical image data often demonstrate strong individual heterogeneity. In other words, the image regions associated with an outcome could be different across patients. As a consequence, the traditional one‐model‐fits‐all approach not only omits patient heterogeneity but also possibly leads to misleading or even wrong conclusions. In this article, we introduce a novel statistical framework to detect individualized regions that are associated with a binary outcome, that is, whether a patient has a certain disease or not. Moreover, we propose a total variation‐based penalization for individualized image region detection under a local label‐free scenario. Considering that local labeling is often difficult to obtain for medical image data, our approach may potentially have a wider range of applications in medical research. The effectiveness of our proposed approach is validated by two real histopathology databases: Colon Cancer and Camelyon16.","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"105 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Individualized image region detection with total variation\",\"authors\":\"Sanyou Wu, Fuying Wang, Long Feng\",\"doi\":\"10.1002/sam.11684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical image data have emerged to be an indispensable component of modern medicine. Different from many general image problems that focus on outcome prediction or image recognition, medical image analysis pays more attention to model interpretation. For instance, given a list of medical images and corresponding labels of patients' health status, it is often of greater importance to identify the image regions that could differentiate the outcome status, compared to simply predicting labels of new images. Moreover, medical image data often demonstrate strong individual heterogeneity. In other words, the image regions associated with an outcome could be different across patients. As a consequence, the traditional one‐model‐fits‐all approach not only omits patient heterogeneity but also possibly leads to misleading or even wrong conclusions. In this article, we introduce a novel statistical framework to detect individualized regions that are associated with a binary outcome, that is, whether a patient has a certain disease or not. Moreover, we propose a total variation‐based penalization for individualized image region detection under a local label‐free scenario. Considering that local labeling is often difficult to obtain for medical image data, our approach may potentially have a wider range of applications in medical research. The effectiveness of our proposed approach is validated by two real histopathology databases: Colon Cancer and Camelyon16.\",\"PeriodicalId\":48684,\"journal\":{\"name\":\"Statistical Analysis and Data Mining\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11684\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11684","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Individualized image region detection with total variation
Medical image data have emerged to be an indispensable component of modern medicine. Different from many general image problems that focus on outcome prediction or image recognition, medical image analysis pays more attention to model interpretation. For instance, given a list of medical images and corresponding labels of patients' health status, it is often of greater importance to identify the image regions that could differentiate the outcome status, compared to simply predicting labels of new images. Moreover, medical image data often demonstrate strong individual heterogeneity. In other words, the image regions associated with an outcome could be different across patients. As a consequence, the traditional one‐model‐fits‐all approach not only omits patient heterogeneity but also possibly leads to misleading or even wrong conclusions. In this article, we introduce a novel statistical framework to detect individualized regions that are associated with a binary outcome, that is, whether a patient has a certain disease or not. Moreover, we propose a total variation‐based penalization for individualized image region detection under a local label‐free scenario. Considering that local labeling is often difficult to obtain for medical image data, our approach may potentially have a wider range of applications in medical research. The effectiveness of our proposed approach is validated by two real histopathology databases: Colon Cancer and Camelyon16.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.