随机过程均值和协方差函数的通用非参数核型估计器

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
Yu. Yu. Linke, I. S. Borisov
{"title":"随机过程均值和协方差函数的通用非参数核型估计器","authors":"Yu. Yu. Linke, I. S. Borisov","doi":"10.1137/s0040585x97t991738","DOIUrl":null,"url":null,"abstract":"Theory of Probability &amp;Its Applications, Volume 69, Issue 1, Page 35-58, May 2024. <br/> Let $f_1(t), \\dots, f_n(t)$ be independent copies of some a.s. continuous stochastic process $f(t)$, $t\\in[0,1]$, which are observed with noise. We consider the problem of nonparametric estimation of the mean function $\\mu(t) = \\mathbf{E}f(t)$ and of the covariance function $\\psi(t,s)=\\operatorname{Cov}\\{f(t),f(s)\\}$ if the noise values of each of the copies $f_i(t)$, $i=1,\\dots,n$, are observed in some collection of generally random (in general) time points (regressors). Under wide assumptions on the time points, we construct uniformly consistent kernel estimators for the mean and covariance functions both in the case of sparse data (where the number of observations for each copy of the stochastic process is uniformly bounded) and in the case of dense data (where the number of observations at each of $n$ series is increasing as $n\\to\\infty$). In contrast to the previous studies, our kernel estimators are universal with respect to the structure of time points, which can be either fixed rather than necessarily regular, or random rather than necessarily formed of independent or weakly dependent random variables.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":"9 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal Nonparametric Kernel-Type Estimators for the Mean and Covariance Functions of a Stochastic Process\",\"authors\":\"Yu. Yu. Linke, I. S. Borisov\",\"doi\":\"10.1137/s0040585x97t991738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theory of Probability &amp;Its Applications, Volume 69, Issue 1, Page 35-58, May 2024. <br/> Let $f_1(t), \\\\dots, f_n(t)$ be independent copies of some a.s. continuous stochastic process $f(t)$, $t\\\\in[0,1]$, which are observed with noise. We consider the problem of nonparametric estimation of the mean function $\\\\mu(t) = \\\\mathbf{E}f(t)$ and of the covariance function $\\\\psi(t,s)=\\\\operatorname{Cov}\\\\{f(t),f(s)\\\\}$ if the noise values of each of the copies $f_i(t)$, $i=1,\\\\dots,n$, are observed in some collection of generally random (in general) time points (regressors). Under wide assumptions on the time points, we construct uniformly consistent kernel estimators for the mean and covariance functions both in the case of sparse data (where the number of observations for each copy of the stochastic process is uniformly bounded) and in the case of dense data (where the number of observations at each of $n$ series is increasing as $n\\\\to\\\\infty$). In contrast to the previous studies, our kernel estimators are universal with respect to the structure of time points, which can be either fixed rather than necessarily regular, or random rather than necessarily formed of independent or weakly dependent random variables.\",\"PeriodicalId\":51193,\"journal\":{\"name\":\"Theory of Probability and its Applications\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/s0040585x97t991738\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991738","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

概率论及其应用》(Theory of Probability &Its Applications),第 69 卷第 1 期,第 35-58 页,2024 年 5 月。 让 $f_1(t), \dots, f_n(t)$ 是某个 a.s. 连续随机过程 $f(t)$ 的独立副本,$t\in[0,1]$,它们是用噪声观测到的。如果每个副本 $f_i(t)$($i=1,\dots,n$)的噪声值都是在一些一般随机(在一般情况下)时间点(回归因子)集合中观测到的,那么我们要考虑对均值函数 $\mu(t) = \mathbf{E}f(t)$ 和协方差函数 $\psi(t,s)=\operatorname{Cov}\{f(t),f(s)\}$ 的非参数估计问题。在对时间点的宽泛假设下,我们为稀疏数据(随机过程的每个副本的观察数都是均匀有界的)和密集数据(每个 $n$ 序列的观察数都随着 $n\to\infty$ 的增加而增加)情况下的均值和协方差函数构建了均匀一致的核估计器。与之前的研究不同,我们的核估计器对于时间点的结构是通用的,时间点可以是固定的而不一定是规则的,也可以是随机的而不一定是由独立或弱依赖随机变量组成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal Nonparametric Kernel-Type Estimators for the Mean and Covariance Functions of a Stochastic Process
Theory of Probability &Its Applications, Volume 69, Issue 1, Page 35-58, May 2024.
Let $f_1(t), \dots, f_n(t)$ be independent copies of some a.s. continuous stochastic process $f(t)$, $t\in[0,1]$, which are observed with noise. We consider the problem of nonparametric estimation of the mean function $\mu(t) = \mathbf{E}f(t)$ and of the covariance function $\psi(t,s)=\operatorname{Cov}\{f(t),f(s)\}$ if the noise values of each of the copies $f_i(t)$, $i=1,\dots,n$, are observed in some collection of generally random (in general) time points (regressors). Under wide assumptions on the time points, we construct uniformly consistent kernel estimators for the mean and covariance functions both in the case of sparse data (where the number of observations for each copy of the stochastic process is uniformly bounded) and in the case of dense data (where the number of observations at each of $n$ series is increasing as $n\to\infty$). In contrast to the previous studies, our kernel estimators are universal with respect to the structure of time points, which can be either fixed rather than necessarily regular, or random rather than necessarily formed of independent or weakly dependent random variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory of Probability and its Applications
Theory of Probability and its Applications 数学-统计学与概率论
CiteScore
1.00
自引率
16.70%
发文量
54
审稿时长
6 months
期刊介绍: Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信