{"title":"论$\\mathbf{Z}^{{d}}$上具有无限跳跃方差的周期性分支随机漫步","authors":"K. S. Ryadovkin","doi":"10.1137/s0040585x97t991763","DOIUrl":null,"url":null,"abstract":"Theory of Probability &Its Applications, Volume 69, Issue 1, Page 88-98, May 2024. <br/> We consider periodic branching random walks with periodic branching sources. It is assumed that the transition intensities of the random walk satisfy some symmetry conditions and obey a condition which ensures infinite variance of jumps. In this case, we obtain the leading term for the asymptotics of the mean population size of particles at an arbitrary point of the lattice for large time.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":"67 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Periodic Branching Random Walk on $\\\\mathbf{Z}^{{d}}$ with an Infinite Variance of Jumps\",\"authors\":\"K. S. Ryadovkin\",\"doi\":\"10.1137/s0040585x97t991763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theory of Probability &Its Applications, Volume 69, Issue 1, Page 88-98, May 2024. <br/> We consider periodic branching random walks with periodic branching sources. It is assumed that the transition intensities of the random walk satisfy some symmetry conditions and obey a condition which ensures infinite variance of jumps. In this case, we obtain the leading term for the asymptotics of the mean population size of particles at an arbitrary point of the lattice for large time.\",\"PeriodicalId\":51193,\"journal\":{\"name\":\"Theory of Probability and its Applications\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/s0040585x97t991763\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991763","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
概率论及其应用》(Theory of Probability &Its Applications),第 69 卷第 1 期,第 88-98 页,2024 年 5 月。 我们考虑具有周期性分支源的周期性分支随机游走。假定随机游走的过渡强度满足某些对称条件,并服从一个确保跳跃方差无限大的条件。在这种情况下,我们得到了大时间内晶格任意点上粒子平均种群数量渐近的前导项。
On a Periodic Branching Random Walk on $\mathbf{Z}^{{d}}$ with an Infinite Variance of Jumps
Theory of Probability &Its Applications, Volume 69, Issue 1, Page 88-98, May 2024. We consider periodic branching random walks with periodic branching sources. It is assumed that the transition intensities of the random walk satisfy some symmetry conditions and obey a condition which ensures infinite variance of jumps. In this case, we obtain the leading term for the asymptotics of the mean population size of particles at an arbitrary point of the lattice for large time.
期刊介绍:
Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.