Riko Katsuki, Mai Kanuka, Ren Ohta, Shusei Yoshida, Taku Tamura
{"title":"ERAD增强因子EDEM1的转换由多种降解途径介导","authors":"Riko Katsuki, Mai Kanuka, Ren Ohta, Shusei Yoshida, Taku Tamura","doi":"10.1111/gtc.13117","DOIUrl":null,"url":null,"abstract":"<p>Quality-based protein production and degradation in the endoplasmic reticulum (ER) are essential for eukaryotic cell survival. During protein maturation in the ER, misfolded or unassembled proteins are destined for disposal through a process known as ER-associated degradation (ERAD). EDEM1 is an ERAD-accelerating factor whose gene expression is upregulated by the accumulation of aberrant proteins in the ER, known as ER stress. Although the role of EDEM1 in ERAD has been studied in detail, the turnover of EDEM1 by intracellular degradation machinery, including the proteasome and autophagy, is not well understood. To clarify EDEM1 regulation in the protein level, degradation mechanism of EDEM1 was examined. Our results indicate that both ERAD and autophagy degrade EDEM1 alike misfolded degradation substrates, although each degradation machinery targets EDEM1 in different folded states of proteins. We also found that ERAD factors, including the SEL1L/Hrd1 complex, YOD1, XTP3B, ERdj3, VIMP, BAG6, and JB12, but not OS9, are involved in EDEM1 degradation in a mannose-trimming-dependent and -independent manner. Our results suggest that the ERAD accelerating factor, EDEM1, is turned over by the ERAD itself, similar to ERAD clients.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gtc.13117","citationCount":"0","resultStr":"{\"title\":\"Turnover of EDEM1, an ERAD-enhancing factor, is mediated by multiple degradation routes\",\"authors\":\"Riko Katsuki, Mai Kanuka, Ren Ohta, Shusei Yoshida, Taku Tamura\",\"doi\":\"10.1111/gtc.13117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quality-based protein production and degradation in the endoplasmic reticulum (ER) are essential for eukaryotic cell survival. During protein maturation in the ER, misfolded or unassembled proteins are destined for disposal through a process known as ER-associated degradation (ERAD). EDEM1 is an ERAD-accelerating factor whose gene expression is upregulated by the accumulation of aberrant proteins in the ER, known as ER stress. Although the role of EDEM1 in ERAD has been studied in detail, the turnover of EDEM1 by intracellular degradation machinery, including the proteasome and autophagy, is not well understood. To clarify EDEM1 regulation in the protein level, degradation mechanism of EDEM1 was examined. Our results indicate that both ERAD and autophagy degrade EDEM1 alike misfolded degradation substrates, although each degradation machinery targets EDEM1 in different folded states of proteins. We also found that ERAD factors, including the SEL1L/Hrd1 complex, YOD1, XTP3B, ERdj3, VIMP, BAG6, and JB12, but not OS9, are involved in EDEM1 degradation in a mannose-trimming-dependent and -independent manner. Our results suggest that the ERAD accelerating factor, EDEM1, is turned over by the ERAD itself, similar to ERAD clients.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gtc.13117\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13117\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13117","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Turnover of EDEM1, an ERAD-enhancing factor, is mediated by multiple degradation routes
Quality-based protein production and degradation in the endoplasmic reticulum (ER) are essential for eukaryotic cell survival. During protein maturation in the ER, misfolded or unassembled proteins are destined for disposal through a process known as ER-associated degradation (ERAD). EDEM1 is an ERAD-accelerating factor whose gene expression is upregulated by the accumulation of aberrant proteins in the ER, known as ER stress. Although the role of EDEM1 in ERAD has been studied in detail, the turnover of EDEM1 by intracellular degradation machinery, including the proteasome and autophagy, is not well understood. To clarify EDEM1 regulation in the protein level, degradation mechanism of EDEM1 was examined. Our results indicate that both ERAD and autophagy degrade EDEM1 alike misfolded degradation substrates, although each degradation machinery targets EDEM1 in different folded states of proteins. We also found that ERAD factors, including the SEL1L/Hrd1 complex, YOD1, XTP3B, ERdj3, VIMP, BAG6, and JB12, but not OS9, are involved in EDEM1 degradation in a mannose-trimming-dependent and -independent manner. Our results suggest that the ERAD accelerating factor, EDEM1, is turned over by the ERAD itself, similar to ERAD clients.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.