{"title":"C* 矩阵的张量吸收夹杂物","authors":"Pawel Sarkowicz","doi":"10.4153/s0008414x24000324","DOIUrl":null,"url":null,"abstract":"<p>When <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {D}$</span></span></img></span></span> is strongly self-absorbing, we say an inclusion <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$B \\subseteq A$</span></span></img></span></span> of C*-algebras is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {D}$</span></span></img></span></span>-stable if it is isomorphic to the inclusion <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$B \\otimes \\mathcal {D} \\subseteq A \\otimes \\mathcal {D}$</span></span></img></span></span>. We give ultrapower characterizations and show that if a unital inclusion is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {D}$</span></span></img></span></span>-stable, then <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {D}$</span></span></img></span></span>-stability can be exhibited for countably many intermediate C*-algebras concurrently. We show that such unital embeddings between unital <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {D}$</span></span></img></span></span>-stable C*-algebras are point-norm dense in the set of all unital embeddings, and that every unital embedding between <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {D}$</span></span></img></span></span>-stable C*-algebras is approximately unitarily equivalent to a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {D}$</span></span></img></span></span>-stable embedding. Examples are provided.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensorially absorbing inclusions of C*-algebras\",\"authors\":\"Pawel Sarkowicz\",\"doi\":\"10.4153/s0008414x24000324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>When <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {D}$</span></span></img></span></span> is strongly self-absorbing, we say an inclusion <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$B \\\\subseteq A$</span></span></img></span></span> of C*-algebras is <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {D}$</span></span></img></span></span>-stable if it is isomorphic to the inclusion <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$B \\\\otimes \\\\mathcal {D} \\\\subseteq A \\\\otimes \\\\mathcal {D}$</span></span></img></span></span>. We give ultrapower characterizations and show that if a unital inclusion is <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {D}$</span></span></img></span></span>-stable, then <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {D}$</span></span></img></span></span>-stability can be exhibited for countably many intermediate C*-algebras concurrently. We show that such unital embeddings between unital <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {D}$</span></span></img></span></span>-stable C*-algebras are point-norm dense in the set of all unital embeddings, and that every unital embedding between <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {D}$</span></span></img></span></span>-stable C*-algebras is approximately unitarily equivalent to a <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {D}$</span></span></img></span></span>-stable embedding. Examples are provided.</p>\",\"PeriodicalId\":501820,\"journal\":{\"name\":\"Canadian Journal of Mathematics\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x24000324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
When $\mathcal {D}$ is strongly self-absorbing, we say an inclusion $B \subseteq A$ of C*-algebras is $\mathcal {D}$-stable if it is isomorphic to the inclusion $B \otimes \mathcal {D} \subseteq A \otimes \mathcal {D}$. We give ultrapower characterizations and show that if a unital inclusion is $\mathcal {D}$-stable, then $\mathcal {D}$-stability can be exhibited for countably many intermediate C*-algebras concurrently. We show that such unital embeddings between unital $\mathcal {D}$-stable C*-algebras are point-norm dense in the set of all unital embeddings, and that every unital embedding between $\mathcal {D}$-stable C*-algebras is approximately unitarily equivalent to a $\mathcal {D}$-stable embedding. Examples are provided.