Kaiyue Yang, Jianjun Zhao, Xiaozhong Du, Xinbing Xie, He Du
{"title":"锂电池电极在压延变形区的微观结构演变和力学分析","authors":"Kaiyue Yang, Jianjun Zhao, Xiaozhong Du, Xinbing Xie, He Du","doi":"10.1007/s40571-024-00754-7","DOIUrl":null,"url":null,"abstract":"<p>The microstructure of the electrode and its mechanical properties are important factors affecting the performance of lithium batteries. Calendering is one of the most important aspects that affect the microstructure and mechanical response of lithium battery electrodes. Discrete element method was employed to establish a lithium battery electrode model that considered the real particle shape and size distribution. Subsequently, calendering simulations were conducted to reveal the microstructure evolution and mechanical properties of the electrode in the deformation zone. The results show that the electrode density and porosity in the calendering deformation zone change sharply at first and then slow down, and the appropriate increase of the roller diameter is helpful to alleviate this phenomenon. Calendering will cause the pore sizes in the electrode to become smaller, and this process reduces the floating range of the pore sizes. The stress change of the electrode during the calendering process mainly occurs in the normal direction (<i>z</i>-direction), but there is also a small stress change in the length direction (<i>x</i>-direction).</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"21 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure evolution and mechanical analysis of lithium battery electrode in calendering deformation zone\",\"authors\":\"Kaiyue Yang, Jianjun Zhao, Xiaozhong Du, Xinbing Xie, He Du\",\"doi\":\"10.1007/s40571-024-00754-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The microstructure of the electrode and its mechanical properties are important factors affecting the performance of lithium batteries. Calendering is one of the most important aspects that affect the microstructure and mechanical response of lithium battery electrodes. Discrete element method was employed to establish a lithium battery electrode model that considered the real particle shape and size distribution. Subsequently, calendering simulations were conducted to reveal the microstructure evolution and mechanical properties of the electrode in the deformation zone. The results show that the electrode density and porosity in the calendering deformation zone change sharply at first and then slow down, and the appropriate increase of the roller diameter is helpful to alleviate this phenomenon. Calendering will cause the pore sizes in the electrode to become smaller, and this process reduces the floating range of the pore sizes. The stress change of the electrode during the calendering process mainly occurs in the normal direction (<i>z</i>-direction), but there is also a small stress change in the length direction (<i>x</i>-direction).</p>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40571-024-00754-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00754-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Microstructure evolution and mechanical analysis of lithium battery electrode in calendering deformation zone
The microstructure of the electrode and its mechanical properties are important factors affecting the performance of lithium batteries. Calendering is one of the most important aspects that affect the microstructure and mechanical response of lithium battery electrodes. Discrete element method was employed to establish a lithium battery electrode model that considered the real particle shape and size distribution. Subsequently, calendering simulations were conducted to reveal the microstructure evolution and mechanical properties of the electrode in the deformation zone. The results show that the electrode density and porosity in the calendering deformation zone change sharply at first and then slow down, and the appropriate increase of the roller diameter is helpful to alleviate this phenomenon. Calendering will cause the pore sizes in the electrode to become smaller, and this process reduces the floating range of the pore sizes. The stress change of the electrode during the calendering process mainly occurs in the normal direction (z-direction), but there is also a small stress change in the length direction (x-direction).
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.