奥特空间简单闭包的度定理

Pub Date : 2024-05-01 DOI:10.4310/hha.2024.v26.n1.a13
Juliet Aygun, Jeremy Miller
{"title":"奥特空间简单闭包的度定理","authors":"Juliet Aygun, Jeremy Miller","doi":"10.4310/hha.2024.v26.n1.a13","DOIUrl":null,"url":null,"abstract":"The degree of a based graph is the number of essential non-basepoint vertices after generic perturbation. Hatcher–Vogtmann’s degree theorem states that the subcomplex of Auter Space of graphs of degree at most $d$ is $(d-1)$-connected. We extend the definition of degree to the simplicial closure of Auter Space and prove a version of Hatcher–Vogtmann’s result in this context.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A degree theorem for the simplicial closure of Auter Space\",\"authors\":\"Juliet Aygun, Jeremy Miller\",\"doi\":\"10.4310/hha.2024.v26.n1.a13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The degree of a based graph is the number of essential non-basepoint vertices after generic perturbation. Hatcher–Vogtmann’s degree theorem states that the subcomplex of Auter Space of graphs of degree at most $d$ is $(d-1)$-connected. We extend the definition of degree to the simplicial closure of Auter Space and prove a version of Hatcher–Vogtmann’s result in this context.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2024.v26.n1.a13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n1.a13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于图的度数是一般扰动后基本非基点顶点的数目。Hatcher-Vogtmann 的阶数定理指出,阶数最多为 $d$ 的图的 Auter 空间子复数是 $(d-1)$ 连接的。我们将度的定义扩展到 Auter 空间的简单闭包,并在此背景下证明了 Hatcher-Vogtmann 结果的一个版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A degree theorem for the simplicial closure of Auter Space
The degree of a based graph is the number of essential non-basepoint vertices after generic perturbation. Hatcher–Vogtmann’s degree theorem states that the subcomplex of Auter Space of graphs of degree at most $d$ is $(d-1)$-connected. We extend the definition of degree to the simplicial closure of Auter Space and prove a version of Hatcher–Vogtmann’s result in this context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信