可变指数勒贝格空间上的合成算子

IF 0.6 3区 数学 Q3 MATHEMATICS
D. S. Bajaj, G. Datt
{"title":"可变指数勒贝格空间上的合成算子","authors":"D. S. Bajaj,&nbsp;G. Datt","doi":"10.1007/s10476-024-00015-y","DOIUrl":null,"url":null,"abstract":"<div><p>We study composition operators between variable exponent\nLebesgue spaces and characterize boundedness and compactness of the composition operators on a variable exponent Lebesgue space. We also derive a sufficient condition for composition operator to have a closed range and explain some\nproperties which these operators share with the case of Lebesgue spaces.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composition operators on variable exponent Lebesgue spaces\",\"authors\":\"D. S. Bajaj,&nbsp;G. Datt\",\"doi\":\"10.1007/s10476-024-00015-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study composition operators between variable exponent\\nLebesgue spaces and characterize boundedness and compactness of the composition operators on a variable exponent Lebesgue space. We also derive a sufficient condition for composition operator to have a closed range and explain some\\nproperties which these operators share with the case of Lebesgue spaces.</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-024-00015-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00015-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了可变指数莱比斯格空间之间的组成算子,并描述了可变指数莱比斯格空间上组成算子的有界性和紧凑性。我们还推导出了组成算子具有封闭范围的充分条件,并解释了这些算子与 Lebesgue 空间算子共有的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Composition operators on variable exponent Lebesgue spaces

We study composition operators between variable exponent Lebesgue spaces and characterize boundedness and compactness of the composition operators on a variable exponent Lebesgue space. We also derive a sufficient condition for composition operator to have a closed range and explain some properties which these operators share with the case of Lebesgue spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信