深度学习揭示辐射风险评估的新见解

Zhenqiu Liu, Igor Shuryak, David J Brenner, Robert L Ullrich
{"title":"深度学习揭示辐射风险评估的新见解","authors":"Zhenqiu Liu, Igor Shuryak, David J Brenner, Robert L Ullrich","doi":"10.1101/2024.04.27.24306487","DOIUrl":null,"url":null,"abstract":"Contemporary radiation risk assessment predominantly depends on nonlinear parametric models, which typically include a baseline term, a dose-response term, and an effect modifier term. Despite their widespread application in estimating tumor risks, parametric models face a notable drawback: their rigid model structure can be overly restrictive, potentially introducing bias and inaccuracies into risk estimations.","PeriodicalId":501555,"journal":{"name":"medRxiv - Occupational and Environmental Health","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Insights for Radiation Risk Assessment Unveiled by Deep Learning\",\"authors\":\"Zhenqiu Liu, Igor Shuryak, David J Brenner, Robert L Ullrich\",\"doi\":\"10.1101/2024.04.27.24306487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contemporary radiation risk assessment predominantly depends on nonlinear parametric models, which typically include a baseline term, a dose-response term, and an effect modifier term. Despite their widespread application in estimating tumor risks, parametric models face a notable drawback: their rigid model structure can be overly restrictive, potentially introducing bias and inaccuracies into risk estimations.\",\"PeriodicalId\":501555,\"journal\":{\"name\":\"medRxiv - Occupational and Environmental Health\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Occupational and Environmental Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.04.27.24306487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Occupational and Environmental Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.04.27.24306487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当代辐射风险评估主要依赖于非线性参数模型,这些模型通常包括基线项、剂量反应项和效应修饰项。尽管参数模型在估算肿瘤风险方面应用广泛,但它也面临着一个明显的缺点:其僵化的模型结构可能限制性过强,有可能给风险估算带来偏差和不准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Insights for Radiation Risk Assessment Unveiled by Deep Learning
Contemporary radiation risk assessment predominantly depends on nonlinear parametric models, which typically include a baseline term, a dose-response term, and an effect modifier term. Despite their widespread application in estimating tumor risks, parametric models face a notable drawback: their rigid model structure can be overly restrictive, potentially introducing bias and inaccuracies into risk estimations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信