{"title":"检测人群运动中的自组织模式:优化算法的影响","authors":"Samson Worku, Pratik Mullick","doi":"10.1186/s13362-024-00145-w","DOIUrl":null,"url":null,"abstract":"The escalating process of urbanization has raised concerns about incidents arising from overcrowding, necessitating a deep understanding of large human crowd behavior and the development of effective crowd management strategies. This study employs computational methods to analyze real-world crowd behaviors, emphasizing self-organizing patterns. Notably, the intersection of two streams of individuals triggers the spontaneous emergence of striped patterns, validated through both simulations and live human experiments. Addressing a gap in computational methods for studying these patterns, previous research utilized the pattern-matching technique, employing the Nelder-Mead Simplex algorithm for fitting a two-dimensional sinusoidal function to pedestrian coordinates. This paper advances the pattern-matching procedure by introducing Simulated Annealing as the optimization algorithm and employing a two-dimensional square wave for data fitting. The amalgamation of Simulated Annealing and the square wave significantly enhances pattern fitting quality, validated through statistical hypothesis tests. The study concludes by outlining potential applications of this method across diverse scenarios.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting self-organising patterns in crowd motion: effect of optimisation algorithms\",\"authors\":\"Samson Worku, Pratik Mullick\",\"doi\":\"10.1186/s13362-024-00145-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The escalating process of urbanization has raised concerns about incidents arising from overcrowding, necessitating a deep understanding of large human crowd behavior and the development of effective crowd management strategies. This study employs computational methods to analyze real-world crowd behaviors, emphasizing self-organizing patterns. Notably, the intersection of two streams of individuals triggers the spontaneous emergence of striped patterns, validated through both simulations and live human experiments. Addressing a gap in computational methods for studying these patterns, previous research utilized the pattern-matching technique, employing the Nelder-Mead Simplex algorithm for fitting a two-dimensional sinusoidal function to pedestrian coordinates. This paper advances the pattern-matching procedure by introducing Simulated Annealing as the optimization algorithm and employing a two-dimensional square wave for data fitting. The amalgamation of Simulated Annealing and the square wave significantly enhances pattern fitting quality, validated through statistical hypothesis tests. The study concludes by outlining potential applications of this method across diverse scenarios.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13362-024-00145-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13362-024-00145-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Detecting self-organising patterns in crowd motion: effect of optimisation algorithms
The escalating process of urbanization has raised concerns about incidents arising from overcrowding, necessitating a deep understanding of large human crowd behavior and the development of effective crowd management strategies. This study employs computational methods to analyze real-world crowd behaviors, emphasizing self-organizing patterns. Notably, the intersection of two streams of individuals triggers the spontaneous emergence of striped patterns, validated through both simulations and live human experiments. Addressing a gap in computational methods for studying these patterns, previous research utilized the pattern-matching technique, employing the Nelder-Mead Simplex algorithm for fitting a two-dimensional sinusoidal function to pedestrian coordinates. This paper advances the pattern-matching procedure by introducing Simulated Annealing as the optimization algorithm and employing a two-dimensional square wave for data fitting. The amalgamation of Simulated Annealing and the square wave significantly enhances pattern fitting quality, validated through statistical hypothesis tests. The study concludes by outlining potential applications of this method across diverse scenarios.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.