{"title":"论$C_3$在$E_8$中的嵌入","authors":"Robert A. Wilson","doi":"arxiv-2404.18938","DOIUrl":null,"url":null,"abstract":"I investigate the structure of $E_8$ under the action of the\nsubalgebra/subgroup $A_1+G_2+C_3$, as a potential route to unification of the\nfundamental forces of nature into a single algebraic structure. The particular\nreal form $E_{8(-24)}$ supports a decomposition into compact $G_2$ plus split\n$A_1+C_3$, which allows a restriction from $G_2$ to $SU(3)$ for QCD, together\nwith split $SL_2(\\mathbb R)$ to break the symmetry of the weak interaction and\ngive mass to the bosons. The factor $C_3$ contains a copy of the Lorentz group\n$SL_2(\\mathbb C)$ and extends the `spacetime' symmetries to the full group of\nsymplectic symmetries of $3+3$-dimensional phase space.","PeriodicalId":501190,"journal":{"name":"arXiv - PHYS - General Physics","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the embedding of $C_3$ in $E_8$\",\"authors\":\"Robert A. Wilson\",\"doi\":\"arxiv-2404.18938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I investigate the structure of $E_8$ under the action of the\\nsubalgebra/subgroup $A_1+G_2+C_3$, as a potential route to unification of the\\nfundamental forces of nature into a single algebraic structure. The particular\\nreal form $E_{8(-24)}$ supports a decomposition into compact $G_2$ plus split\\n$A_1+C_3$, which allows a restriction from $G_2$ to $SU(3)$ for QCD, together\\nwith split $SL_2(\\\\mathbb R)$ to break the symmetry of the weak interaction and\\ngive mass to the bosons. The factor $C_3$ contains a copy of the Lorentz group\\n$SL_2(\\\\mathbb C)$ and extends the `spacetime' symmetries to the full group of\\nsymplectic symmetries of $3+3$-dimensional phase space.\",\"PeriodicalId\":501190,\"journal\":{\"name\":\"arXiv - PHYS - General Physics\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - General Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.18938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.18938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
I investigate the structure of $E_8$ under the action of the
subalgebra/subgroup $A_1+G_2+C_3$, as a potential route to unification of the
fundamental forces of nature into a single algebraic structure. The particular
real form $E_{8(-24)}$ supports a decomposition into compact $G_2$ plus split
$A_1+C_3$, which allows a restriction from $G_2$ to $SU(3)$ for QCD, together
with split $SL_2(\mathbb R)$ to break the symmetry of the weak interaction and
give mass to the bosons. The factor $C_3$ contains a copy of the Lorentz group
$SL_2(\mathbb C)$ and extends the `spacetime' symmetries to the full group of
symplectic symmetries of $3+3$-dimensional phase space.