{"title":"论混合型平衡受电弓方程","authors":"G. Derfel, B. van Brunt","doi":"10.1007/s11253-024-02295-x","DOIUrl":null,"url":null,"abstract":"<p>We consider the balanced pantograph equation (BPE) <span>\\(y{\\prime}\\left(x\\right)+y\\left(x\\right)={\\sum }_{k=1}^{m}{p}_{k}y\\left({a}_{k}x\\right)\\)</span><i>,</i> where <i>a</i><sub><i>k</i></sub><i>, p</i><sub><i>k</i></sub><i> ></i> 0 and <span>\\({\\sum }_{k=1}^{m}{p}_{k}=1\\)</span>. It is known that if <span>\\(K={\\sum }_{k=1}^{m}{p}_{k}{\\text{ln}}{a}_{k}\\le 0\\)</span> then, under mild technical conditions, the BPE does not have bounded solutions that are not constant, whereas for <i>K ></i> 0 these solutions exist. In the present paper, we deal with a BPE of <i>mixed type</i>, i.e., <i>a</i><sub>1</sub> <i><</i> 1 <i>< a</i><sub><i>m</i></sub><i>,</i> and prove that, in this case, the BPE has a nonconstant solution <i>y</i> and that <i>y</i>(<i>x</i>) ~ <i>cx</i><sup><i>σ</i></sup> as <i>x</i> → ∞<i>,</i> where <i>c ></i> 0 and <i>σ</i> is the unique positive root of the characteristic equation <span>\\(P\\left(s\\right)=1-\\sum_{k=1}^{m} {p}_{k}{a}_{k}^{-s}=0\\)</span><i>.</i> We also show that <i>y</i> is unique (up to a multiplicative constant) among the solutions of the BPE that decay to zero as <i>x</i> → ∞<i>.</i></p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"4 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Balanced Pantograph Equation of Mixed Type\",\"authors\":\"G. Derfel, B. van Brunt\",\"doi\":\"10.1007/s11253-024-02295-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the balanced pantograph equation (BPE) <span>\\\\(y{\\\\prime}\\\\left(x\\\\right)+y\\\\left(x\\\\right)={\\\\sum }_{k=1}^{m}{p}_{k}y\\\\left({a}_{k}x\\\\right)\\\\)</span><i>,</i> where <i>a</i><sub><i>k</i></sub><i>, p</i><sub><i>k</i></sub><i> ></i> 0 and <span>\\\\({\\\\sum }_{k=1}^{m}{p}_{k}=1\\\\)</span>. It is known that if <span>\\\\(K={\\\\sum }_{k=1}^{m}{p}_{k}{\\\\text{ln}}{a}_{k}\\\\le 0\\\\)</span> then, under mild technical conditions, the BPE does not have bounded solutions that are not constant, whereas for <i>K ></i> 0 these solutions exist. In the present paper, we deal with a BPE of <i>mixed type</i>, i.e., <i>a</i><sub>1</sub> <i><</i> 1 <i>< a</i><sub><i>m</i></sub><i>,</i> and prove that, in this case, the BPE has a nonconstant solution <i>y</i> and that <i>y</i>(<i>x</i>) ~ <i>cx</i><sup><i>σ</i></sup> as <i>x</i> → ∞<i>,</i> where <i>c ></i> 0 and <i>σ</i> is the unique positive root of the characteristic equation <span>\\\\(P\\\\left(s\\\\right)=1-\\\\sum_{k=1}^{m} {p}_{k}{a}_{k}^{-s}=0\\\\)</span><i>.</i> We also show that <i>y</i> is unique (up to a multiplicative constant) among the solutions of the BPE that decay to zero as <i>x</i> → ∞<i>.</i></p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02295-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02295-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑平衡受电弓方程(BPE)\(y{\prime}\left(x\right)+y\left(x\right)={\sum }_{k=1}^{m}{p}_{k}y\left({a}_{k}x\right)\), 其中 ak, pk > 0 和 \({\sum }_{k=1}^{m}{p}_{k}=1\).众所周知,如果 \(K={\sum }_{k=1}^{m}{p}_{k}{text\{ln}}{a}_{k}\le 0\) 那么,在温和的技术条件下,BPE 不存在非恒定的有界解,而对于 K > 0,这些解是存在的。在本文中,我们将处理混合类型的 BPE,即 a1 < 1 < am,并证明在这种情况下,BPE 有一个非恒定解 y,并且 y(x) ~ cxσ as x → ∞,其中 c > 0 和 σ 是特征方程 \(P\left(s\right)=1-\sum_{k=1}^{m} 的唯一正根。{p}_{k}{a}_{k}^{-s}=0\).我们还证明,在随着 x → ∞ 衰减为零的 BPE 解中,y 是唯一的(直到一个乘法常数)。
We consider the balanced pantograph equation (BPE) \(y{\prime}\left(x\right)+y\left(x\right)={\sum }_{k=1}^{m}{p}_{k}y\left({a}_{k}x\right)\), where ak, pk > 0 and \({\sum }_{k=1}^{m}{p}_{k}=1\). It is known that if \(K={\sum }_{k=1}^{m}{p}_{k}{\text{ln}}{a}_{k}\le 0\) then, under mild technical conditions, the BPE does not have bounded solutions that are not constant, whereas for K > 0 these solutions exist. In the present paper, we deal with a BPE of mixed type, i.e., a1< 1 < am, and prove that, in this case, the BPE has a nonconstant solution y and that y(x) ~ cxσ as x → ∞, where c > 0 and σ is the unique positive root of the characteristic equation \(P\left(s\right)=1-\sum_{k=1}^{m} {p}_{k}{a}_{k}^{-s}=0\). We also show that y is unique (up to a multiplicative constant) among the solutions of the BPE that decay to zero as x → ∞.
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.