{"title":"金属对以小麦秸秆为基础的固定床生物反应器中蝇蛆产生木质纤维素分解酶和去除金属的影响","authors":"Kalu Ram Sharma, Rakesh Kumar Sharma","doi":"10.1002/ep.14401","DOIUrl":null,"url":null,"abstract":"<p>Heavy metals contamination poses a significant environmental threat, which requires the development of eco-friendly bioremediation techniques. Present research work was conducted using wheat straw in submerged conditions for the growth of white rot fungus, <i>Phlebia brevispora</i> in the presence of varying concentrations of Cd, Pb, Ni, and Cr. The lignocellulolytic enzyme production ability of fungus was monitored. A wheat straw-based fixed-bed bioreactor was designed to treat metal-containing water in continuous mode. The fungus showed a positive influence on laccase production, cellulase production, and lignin peroxidase activity. As observed through atomic absorption spectroscopy (AAS), Cr removal efficiency was 78%–80%, regardless of the initial metal concentration. The Cr was also found on the surface of fungal mycelium as per the results obtained from SEM–EDX. The continuous bioreactor achieved 98%–99% metal removal, making it a natural and cost-effective solution for metal removal from wastewater using <i>P. brevispora</i>.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of metals on lignocellulolytic enzyme production and metal removal by Phlebia brevispora in a wheat straw based fixed-bed bioreactor\",\"authors\":\"Kalu Ram Sharma, Rakesh Kumar Sharma\",\"doi\":\"10.1002/ep.14401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heavy metals contamination poses a significant environmental threat, which requires the development of eco-friendly bioremediation techniques. Present research work was conducted using wheat straw in submerged conditions for the growth of white rot fungus, <i>Phlebia brevispora</i> in the presence of varying concentrations of Cd, Pb, Ni, and Cr. The lignocellulolytic enzyme production ability of fungus was monitored. A wheat straw-based fixed-bed bioreactor was designed to treat metal-containing water in continuous mode. The fungus showed a positive influence on laccase production, cellulase production, and lignin peroxidase activity. As observed through atomic absorption spectroscopy (AAS), Cr removal efficiency was 78%–80%, regardless of the initial metal concentration. The Cr was also found on the surface of fungal mycelium as per the results obtained from SEM–EDX. The continuous bioreactor achieved 98%–99% metal removal, making it a natural and cost-effective solution for metal removal from wastewater using <i>P. brevispora</i>.</p>\",\"PeriodicalId\":11701,\"journal\":{\"name\":\"Environmental Progress & Sustainable Energy\",\"volume\":\"43 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Progress & Sustainable Energy\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ep.14401\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Progress & Sustainable Energy","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ep.14401","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Influence of metals on lignocellulolytic enzyme production and metal removal by Phlebia brevispora in a wheat straw based fixed-bed bioreactor
Heavy metals contamination poses a significant environmental threat, which requires the development of eco-friendly bioremediation techniques. Present research work was conducted using wheat straw in submerged conditions for the growth of white rot fungus, Phlebia brevispora in the presence of varying concentrations of Cd, Pb, Ni, and Cr. The lignocellulolytic enzyme production ability of fungus was monitored. A wheat straw-based fixed-bed bioreactor was designed to treat metal-containing water in continuous mode. The fungus showed a positive influence on laccase production, cellulase production, and lignin peroxidase activity. As observed through atomic absorption spectroscopy (AAS), Cr removal efficiency was 78%–80%, regardless of the initial metal concentration. The Cr was also found on the surface of fungal mycelium as per the results obtained from SEM–EDX. The continuous bioreactor achieved 98%–99% metal removal, making it a natural and cost-effective solution for metal removal from wastewater using P. brevispora.
期刊介绍:
Environmental Progress , a quarterly publication of the American Institute of Chemical Engineers, reports on critical issues like remediation and treatment of solid or aqueous wastes, air pollution, sustainability, and sustainable energy. Each issue helps chemical engineers (and those in related fields) stay on top of technological advances in all areas associated with the environment through feature articles, updates, book and software reviews, and editorials.