多代理多臂匪徒中决策的分布式共识算法

IF 4 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Xiaotong Cheng;Setareh Maghsudi
{"title":"多代理多臂匪徒中决策的分布式共识算法","authors":"Xiaotong Cheng;Setareh Maghsudi","doi":"10.1109/TCNS.2024.3395850","DOIUrl":null,"url":null,"abstract":"In this article, we study a structured multiagent multiarmed bandit (MAMAB) problem in a dynamic environment. A graph reflects the information-sharing structure among agents, and the arms' reward distributions are piecewise-stationary with several unknown change points. The agents face the identical piecewise-stationary MAB problem. The goal is to develop a decision-making policy for the agents that minimizes the regret, which is the expected total loss of not playing the optimal arm at each time step. Our proposed solution, restarted Bayesian online change point detection in cooperative upper confidence bound (RBO-Coop-UCB) algorithm, involves an efficient multiagent UCB algorithm as its core enhanced with a Bayesian change point detector. We also develop a simple restart decision cooperation that improves decision-making. Theoretically, we establish that the expected group regret of RBO-Coop-UCB is upper bounded by <inline-formula><tex-math>$\\mathcal {O}(KNM\\log T + K\\sqrt{MT\\log T})$</tex-math></inline-formula>, where <inline-formula><tex-math>$K$</tex-math></inline-formula> is the number of agents, <inline-formula><tex-math>$M$</tex-math></inline-formula> is the number of arms, and <inline-formula><tex-math>$T$</tex-math></inline-formula> is the number of time steps. Numerical experiments on synthetic and real-world datasets demonstrate that our proposed method outperforms the state-of-the-art algorithms.","PeriodicalId":56023,"journal":{"name":"IEEE Transactions on Control of Network Systems","volume":"11 4","pages":"2187-2199"},"PeriodicalIF":4.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Consensus Algorithm for Decision-Making in Multiagent Multiarmed Bandit\",\"authors\":\"Xiaotong Cheng;Setareh Maghsudi\",\"doi\":\"10.1109/TCNS.2024.3395850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study a structured multiagent multiarmed bandit (MAMAB) problem in a dynamic environment. A graph reflects the information-sharing structure among agents, and the arms' reward distributions are piecewise-stationary with several unknown change points. The agents face the identical piecewise-stationary MAB problem. The goal is to develop a decision-making policy for the agents that minimizes the regret, which is the expected total loss of not playing the optimal arm at each time step. Our proposed solution, restarted Bayesian online change point detection in cooperative upper confidence bound (RBO-Coop-UCB) algorithm, involves an efficient multiagent UCB algorithm as its core enhanced with a Bayesian change point detector. We also develop a simple restart decision cooperation that improves decision-making. Theoretically, we establish that the expected group regret of RBO-Coop-UCB is upper bounded by <inline-formula><tex-math>$\\\\mathcal {O}(KNM\\\\log T + K\\\\sqrt{MT\\\\log T})$</tex-math></inline-formula>, where <inline-formula><tex-math>$K$</tex-math></inline-formula> is the number of agents, <inline-formula><tex-math>$M$</tex-math></inline-formula> is the number of arms, and <inline-formula><tex-math>$T$</tex-math></inline-formula> is the number of time steps. Numerical experiments on synthetic and real-world datasets demonstrate that our proposed method outperforms the state-of-the-art algorithms.\",\"PeriodicalId\":56023,\"journal\":{\"name\":\"IEEE Transactions on Control of Network Systems\",\"volume\":\"11 4\",\"pages\":\"2187-2199\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control of Network Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10517406/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control of Network Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10517406/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Consensus Algorithm for Decision-Making in Multiagent Multiarmed Bandit
In this article, we study a structured multiagent multiarmed bandit (MAMAB) problem in a dynamic environment. A graph reflects the information-sharing structure among agents, and the arms' reward distributions are piecewise-stationary with several unknown change points. The agents face the identical piecewise-stationary MAB problem. The goal is to develop a decision-making policy for the agents that minimizes the regret, which is the expected total loss of not playing the optimal arm at each time step. Our proposed solution, restarted Bayesian online change point detection in cooperative upper confidence bound (RBO-Coop-UCB) algorithm, involves an efficient multiagent UCB algorithm as its core enhanced with a Bayesian change point detector. We also develop a simple restart decision cooperation that improves decision-making. Theoretically, we establish that the expected group regret of RBO-Coop-UCB is upper bounded by $\mathcal {O}(KNM\log T + K\sqrt{MT\log T})$, where $K$ is the number of agents, $M$ is the number of arms, and $T$ is the number of time steps. Numerical experiments on synthetic and real-world datasets demonstrate that our proposed method outperforms the state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Control of Network Systems
IEEE Transactions on Control of Network Systems Mathematics-Control and Optimization
CiteScore
7.80
自引率
7.10%
发文量
169
期刊介绍: The IEEE Transactions on Control of Network Systems is committed to the timely publication of high-impact papers at the intersection of control systems and network science. In particular, the journal addresses research on the analysis, design and implementation of networked control systems, as well as control over networks. Relevant work includes the full spectrum from basic research on control systems to the design of engineering solutions for automatic control of, and over, networks. The topics covered by this journal include: Coordinated control and estimation over networks, Control and computation over sensor networks, Control under communication constraints, Control and performance analysis issues that arise in the dynamics of networks used in application areas such as communications, computers, transportation, manufacturing, Web ranking and aggregation, social networks, biology, power systems, economics, Synchronization of activities across a controlled network, Stability analysis of controlled networks, Analysis of networks as hybrid dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信