Mirco Bartolozzi, Matteo Massaro, Matteo Mottola, Giovanni Savino
{"title":"通过骑行实验数据表征的增强型摩托车轮胎模型","authors":"Mirco Bartolozzi, Matteo Massaro, Matteo Mottola, Giovanni Savino","doi":"10.1177/09544070241247239","DOIUrl":null,"url":null,"abstract":"Tyre-road interaction governs motorcycle dynamics; however, the most widespread tyre model formulations must be characterised through a dedicated test bench on the lab or road, unavailable to many interested subjects. This article proposed a new tyre model formulation, conceived to be characterised through riding data using standard instrumentation. Albeit its coefficients are identified through quasi-static, uncombined slip manoeuvres, the model addresses transient, combined manoeuvres and is adaptive to road friction levels and static weight through statistical relationships from the literature. A pre-existing formulation was improved and expanded. The model’s behaviour in demanding conditions was investigated through a high-fidelity simulation environment, using a Magic Formula tyre model as the reference. Next, the characterisation procedure was carried out using actual riding data. The model’s accuracy is shown by reproducing numerically one of the manoeuvres and through comparison with the results of a bench test. The proposed model could correctly reproduce the primary behaviour of a Magic Formula model, also concerning tyre moments and steering torque. Characterising the tyre model through real riding data proved feasible, and its robust formulation limited the propagation of estimation errors. The proposed tyre model formulation and characterisation procedure should interest, among others, those subjects that lack access to a tyre testing machine.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An enhanced motorcycle tyre model characterised through experimental riding data\",\"authors\":\"Mirco Bartolozzi, Matteo Massaro, Matteo Mottola, Giovanni Savino\",\"doi\":\"10.1177/09544070241247239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tyre-road interaction governs motorcycle dynamics; however, the most widespread tyre model formulations must be characterised through a dedicated test bench on the lab or road, unavailable to many interested subjects. This article proposed a new tyre model formulation, conceived to be characterised through riding data using standard instrumentation. Albeit its coefficients are identified through quasi-static, uncombined slip manoeuvres, the model addresses transient, combined manoeuvres and is adaptive to road friction levels and static weight through statistical relationships from the literature. A pre-existing formulation was improved and expanded. The model’s behaviour in demanding conditions was investigated through a high-fidelity simulation environment, using a Magic Formula tyre model as the reference. Next, the characterisation procedure was carried out using actual riding data. The model’s accuracy is shown by reproducing numerically one of the manoeuvres and through comparison with the results of a bench test. The proposed model could correctly reproduce the primary behaviour of a Magic Formula model, also concerning tyre moments and steering torque. Characterising the tyre model through real riding data proved feasible, and its robust formulation limited the propagation of estimation errors. The proposed tyre model formulation and characterisation procedure should interest, among others, those subjects that lack access to a tyre testing machine.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544070241247239\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241247239","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An enhanced motorcycle tyre model characterised through experimental riding data
Tyre-road interaction governs motorcycle dynamics; however, the most widespread tyre model formulations must be characterised through a dedicated test bench on the lab or road, unavailable to many interested subjects. This article proposed a new tyre model formulation, conceived to be characterised through riding data using standard instrumentation. Albeit its coefficients are identified through quasi-static, uncombined slip manoeuvres, the model addresses transient, combined manoeuvres and is adaptive to road friction levels and static weight through statistical relationships from the literature. A pre-existing formulation was improved and expanded. The model’s behaviour in demanding conditions was investigated through a high-fidelity simulation environment, using a Magic Formula tyre model as the reference. Next, the characterisation procedure was carried out using actual riding data. The model’s accuracy is shown by reproducing numerically one of the manoeuvres and through comparison with the results of a bench test. The proposed model could correctly reproduce the primary behaviour of a Magic Formula model, also concerning tyre moments and steering torque. Characterising the tyre model through real riding data proved feasible, and its robust formulation limited the propagation of estimation errors. The proposed tyre model formulation and characterisation procedure should interest, among others, those subjects that lack access to a tyre testing machine.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.