全形 Lipschitz 函数的线性化

Pub Date : 2024-05-03 DOI:10.1002/mana.202300527
Richard Aron, Verónica Dimant, Luis C. García-Lirola, Manuel Maestre
{"title":"全形 Lipschitz 函数的线性化","authors":"Richard Aron,&nbsp;Verónica Dimant,&nbsp;Luis C. García-Lirola,&nbsp;Manuel Maestre","doi":"10.1002/mana.202300527","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math> be complex Banach spaces with <span></span><math>\n <semantics>\n <msub>\n <mi>B</mi>\n <mi>X</mi>\n </msub>\n <annotation>$B_X$</annotation>\n </semantics></math> denoting the open unit ball of <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>. This paper studies various aspects of the <i>holomorphic Lipschitz space</i> <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>X</mi>\n </msub>\n <mo>,</mo>\n <mi>Y</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {H}L_0(B_X,Y)$</annotation>\n </semantics></math>, endowed with the Lipschitz norm. This space consists of the functions in the intersection of the sets <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>Lip</mo>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>X</mi>\n </msub>\n <mo>,</mo>\n <mi>Y</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{Lip}_0(B_X,Y)$</annotation>\n </semantics></math> of Lipschitz mappings and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mi>∞</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>X</mi>\n </msub>\n <mo>,</mo>\n <mi>Y</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {H}^\\infty (B_X,Y)$</annotation>\n </semantics></math> of bounded holomorphic mappings, from <span></span><math>\n <semantics>\n <msub>\n <mi>B</mi>\n <mi>X</mi>\n </msub>\n <annotation>$B_X$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math>. Thanks to the Dixmier–Ng theorem, <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>X</mi>\n </msub>\n <mo>,</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {H}L_0(B_X, \\mathbb {C})$</annotation>\n </semantics></math> is indeed a dual space, whose predual <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>X</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {G}_0(B_X)$</annotation>\n </semantics></math> shares linearization properties with both the Lipschitz-free space and Dineen–Mujica predual of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mi>∞</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>X</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {H}^\\infty (B_X)$</annotation>\n </semantics></math>. We explore the similarities and differences between these spaces, and combine techniques to study the properties of the space of holomorphic Lipschitz functions. In particular, we get that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>X</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {G}_0(B_X)$</annotation>\n </semantics></math> contains a 1-complemented subspace isometric to <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> and that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {G}_0(X)$</annotation>\n </semantics></math> has the (metric) approximation property whenever <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> has it. We also analyze when <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>X</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {G}_0(B_X)$</annotation>\n </semantics></math> is a subspace of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>Y</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {G}_0(B_Y)$</annotation>\n </semantics></math>, and we obtain an analog of Godefroy's characterization of functionals with a unique norm preserving extension in the holomorphic Lipschitz context.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300527","citationCount":"0","resultStr":"{\"title\":\"Linearization of holomorphic Lipschitz functions\",\"authors\":\"Richard Aron,&nbsp;Verónica Dimant,&nbsp;Luis C. García-Lirola,&nbsp;Manuel Maestre\",\"doi\":\"10.1002/mana.202300527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>Y</mi>\\n <annotation>$Y$</annotation>\\n </semantics></math> be complex Banach spaces with <span></span><math>\\n <semantics>\\n <msub>\\n <mi>B</mi>\\n <mi>X</mi>\\n </msub>\\n <annotation>$B_X$</annotation>\\n </semantics></math> denoting the open unit ball of <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math>. This paper studies various aspects of the <i>holomorphic Lipschitz space</i> <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n <msub>\\n <mi>L</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>B</mi>\\n <mi>X</mi>\\n </msub>\\n <mo>,</mo>\\n <mi>Y</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {H}L_0(B_X,Y)$</annotation>\\n </semantics></math>, endowed with the Lipschitz norm. This space consists of the functions in the intersection of the sets <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mo>Lip</mo>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>B</mi>\\n <mi>X</mi>\\n </msub>\\n <mo>,</mo>\\n <mi>Y</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\operatorname{Lip}_0(B_X,Y)$</annotation>\\n </semantics></math> of Lipschitz mappings and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mi>∞</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>B</mi>\\n <mi>X</mi>\\n </msub>\\n <mo>,</mo>\\n <mi>Y</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {H}^\\\\infty (B_X,Y)$</annotation>\\n </semantics></math> of bounded holomorphic mappings, from <span></span><math>\\n <semantics>\\n <msub>\\n <mi>B</mi>\\n <mi>X</mi>\\n </msub>\\n <annotation>$B_X$</annotation>\\n </semantics></math> to <span></span><math>\\n <semantics>\\n <mi>Y</mi>\\n <annotation>$Y$</annotation>\\n </semantics></math>. Thanks to the Dixmier–Ng theorem, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n <msub>\\n <mi>L</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>B</mi>\\n <mi>X</mi>\\n </msub>\\n <mo>,</mo>\\n <mi>C</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {H}L_0(B_X, \\\\mathbb {C})$</annotation>\\n </semantics></math> is indeed a dual space, whose predual <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>G</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>B</mi>\\n <mi>X</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {G}_0(B_X)$</annotation>\\n </semantics></math> shares linearization properties with both the Lipschitz-free space and Dineen–Mujica predual of <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mi>∞</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>B</mi>\\n <mi>X</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {H}^\\\\infty (B_X)$</annotation>\\n </semantics></math>. We explore the similarities and differences between these spaces, and combine techniques to study the properties of the space of holomorphic Lipschitz functions. In particular, we get that <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>G</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>B</mi>\\n <mi>X</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {G}_0(B_X)$</annotation>\\n </semantics></math> contains a 1-complemented subspace isometric to <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> and that <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>G</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {G}_0(X)$</annotation>\\n </semantics></math> has the (metric) approximation property whenever <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> has it. We also analyze when <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>G</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>B</mi>\\n <mi>X</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {G}_0(B_X)$</annotation>\\n </semantics></math> is a subspace of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>G</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>B</mi>\\n <mi>Y</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {G}_0(B_Y)$</annotation>\\n </semantics></math>, and we obtain an analog of Godefroy's characterization of functionals with a unique norm preserving extension in the holomorphic Lipschitz context.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300527\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 和 是复巴纳赫空间,表示 .的开放单位球。 本文研究了全态 Lipschitz 空间的各个方面,并赋予其 Lipschitz 准则。由于 Dixmier-Ng 定理,...确实是一个对偶空间,它的前元与...的无 Lipschitz 空间和 Dineen-Mujica 前元共享线性化性质。 我们探讨了这些空间的异同,并结合技术研究了全形 Lipschitz 函数空间的性质。特别是,我们得到,只要具有(度量)逼近性质,就包含一个与之等距的 1 补充子空间。我们还分析了什么情况下是 , 的子空间,并得到了戈德弗洛伊关于全形 Lipschitz 上下文中具有唯一保规范扩展的函数的特征描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Linearization of holomorphic Lipschitz functions

分享
查看原文
Linearization of holomorphic Lipschitz functions

Let X $X$ and Y $Y$ be complex Banach spaces with B X $B_X$ denoting the open unit ball of X $X$ . This paper studies various aspects of the holomorphic Lipschitz space H L 0 ( B X , Y ) $\mathcal {H}L_0(B_X,Y)$ , endowed with the Lipschitz norm. This space consists of the functions in the intersection of the sets Lip 0 ( B X , Y ) $\operatorname{Lip}_0(B_X,Y)$ of Lipschitz mappings and H ( B X , Y ) $\mathcal {H}^\infty (B_X,Y)$ of bounded holomorphic mappings, from B X $B_X$ to Y $Y$ . Thanks to the Dixmier–Ng theorem, H L 0 ( B X , C ) $\mathcal {H}L_0(B_X, \mathbb {C})$ is indeed a dual space, whose predual G 0 ( B X ) $\mathcal {G}_0(B_X)$ shares linearization properties with both the Lipschitz-free space and Dineen–Mujica predual of H ( B X ) $\mathcal {H}^\infty (B_X)$ . We explore the similarities and differences between these spaces, and combine techniques to study the properties of the space of holomorphic Lipschitz functions. In particular, we get that G 0 ( B X ) $\mathcal {G}_0(B_X)$ contains a 1-complemented subspace isometric to X $X$ and that G 0 ( X ) $\mathcal {G}_0(X)$ has the (metric) approximation property whenever X $X$ has it. We also analyze when G 0 ( B X ) $\mathcal {G}_0(B_X)$ is a subspace of G 0 ( B Y ) $\mathcal {G}_0(B_Y)$ , and we obtain an analog of Godefroy's characterization of functionals with a unique norm preserving extension in the holomorphic Lipschitz context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信