{"title":"拓扑$mathrm{K}$理论的实自旋边界和定向","authors":"Zachary Halladay, Yigal Kamel","doi":"arxiv-2405.00963","DOIUrl":null,"url":null,"abstract":"We construct a commutative orthogonal $C_2$-ring spectrum,\n$\\mathrm{MSpin}^c_{\\mathbb{R}}$, along with a $C_2$-$E_{\\infty}$-orientation\n$\\mathrm{MSpin}^c_{\\mathbb{R}} \\to \\mathrm{KU}_{\\mathbb{R}}$ of Atiyah's Real\nK-theory. Further, we define $E_{\\infty}$-maps $\\mathrm{MSpin} \\to\n(\\mathrm{MSpin}^c_{\\mathbb{R}})^{C_2}$ and $\\mathrm{MU}_{\\mathbb{R}} \\to\n\\mathrm{MSpin}^c_{\\mathbb{R}}$, which are used to recover the three well-known\norientations of topological $\\mathrm{K}$-theory, $\\mathrm{MSpin}^c \\to\n\\mathrm{KU}$, $\\mathrm{MSpin} \\to \\mathrm{KO}$, and $\\mathrm{MU}_{\\mathbb{R}}\n\\to \\mathrm{KU}_{\\mathbb{R}}$, from the map $\\mathrm{MSpin}^c_{\\mathbb{R}} \\to\n\\mathrm{KU}_{\\mathbb{R}}$. We also show that the integrality of the\n$\\hat{A}$-genus on spin manifolds provides an obstruction for the fixed points\n$(\\mathrm{MSpin}^c_{\\mathbb{R}})^{C_2}$ to be equivalent to $\\mathrm{MSpin}$,\nusing the Mackey functor structure of\n$\\underline{\\pi}_*\\mathrm{MSpin}^c_{\\mathbb{R}}$. In particular, the usual map\n$\\mathrm{MSpin} \\to \\mathrm{MSpin}^c$ does not arise as the inclusion of fixed\npoints for any $C_2$-$E_{\\infty}$-ring spectrum.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"125 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real spin bordism and orientations of topological $\\\\mathrm{K}$-theory\",\"authors\":\"Zachary Halladay, Yigal Kamel\",\"doi\":\"arxiv-2405.00963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a commutative orthogonal $C_2$-ring spectrum,\\n$\\\\mathrm{MSpin}^c_{\\\\mathbb{R}}$, along with a $C_2$-$E_{\\\\infty}$-orientation\\n$\\\\mathrm{MSpin}^c_{\\\\mathbb{R}} \\\\to \\\\mathrm{KU}_{\\\\mathbb{R}}$ of Atiyah's Real\\nK-theory. Further, we define $E_{\\\\infty}$-maps $\\\\mathrm{MSpin} \\\\to\\n(\\\\mathrm{MSpin}^c_{\\\\mathbb{R}})^{C_2}$ and $\\\\mathrm{MU}_{\\\\mathbb{R}} \\\\to\\n\\\\mathrm{MSpin}^c_{\\\\mathbb{R}}$, which are used to recover the three well-known\\norientations of topological $\\\\mathrm{K}$-theory, $\\\\mathrm{MSpin}^c \\\\to\\n\\\\mathrm{KU}$, $\\\\mathrm{MSpin} \\\\to \\\\mathrm{KO}$, and $\\\\mathrm{MU}_{\\\\mathbb{R}}\\n\\\\to \\\\mathrm{KU}_{\\\\mathbb{R}}$, from the map $\\\\mathrm{MSpin}^c_{\\\\mathbb{R}} \\\\to\\n\\\\mathrm{KU}_{\\\\mathbb{R}}$. We also show that the integrality of the\\n$\\\\hat{A}$-genus on spin manifolds provides an obstruction for the fixed points\\n$(\\\\mathrm{MSpin}^c_{\\\\mathbb{R}})^{C_2}$ to be equivalent to $\\\\mathrm{MSpin}$,\\nusing the Mackey functor structure of\\n$\\\\underline{\\\\pi}_*\\\\mathrm{MSpin}^c_{\\\\mathbb{R}}$. In particular, the usual map\\n$\\\\mathrm{MSpin} \\\\to \\\\mathrm{MSpin}^c$ does not arise as the inclusion of fixed\\npoints for any $C_2$-$E_{\\\\infty}$-ring spectrum.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.00963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.00963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real spin bordism and orientations of topological $\mathrm{K}$-theory
We construct a commutative orthogonal $C_2$-ring spectrum,
$\mathrm{MSpin}^c_{\mathbb{R}}$, along with a $C_2$-$E_{\infty}$-orientation
$\mathrm{MSpin}^c_{\mathbb{R}} \to \mathrm{KU}_{\mathbb{R}}$ of Atiyah's Real
K-theory. Further, we define $E_{\infty}$-maps $\mathrm{MSpin} \to
(\mathrm{MSpin}^c_{\mathbb{R}})^{C_2}$ and $\mathrm{MU}_{\mathbb{R}} \to
\mathrm{MSpin}^c_{\mathbb{R}}$, which are used to recover the three well-known
orientations of topological $\mathrm{K}$-theory, $\mathrm{MSpin}^c \to
\mathrm{KU}$, $\mathrm{MSpin} \to \mathrm{KO}$, and $\mathrm{MU}_{\mathbb{R}}
\to \mathrm{KU}_{\mathbb{R}}$, from the map $\mathrm{MSpin}^c_{\mathbb{R}} \to
\mathrm{KU}_{\mathbb{R}}$. We also show that the integrality of the
$\hat{A}$-genus on spin manifolds provides an obstruction for the fixed points
$(\mathrm{MSpin}^c_{\mathbb{R}})^{C_2}$ to be equivalent to $\mathrm{MSpin}$,
using the Mackey functor structure of
$\underline{\pi}_*\mathrm{MSpin}^c_{\mathbb{R}}$. In particular, the usual map
$\mathrm{MSpin} \to \mathrm{MSpin}^c$ does not arise as the inclusion of fixed
points for any $C_2$-$E_{\infty}$-ring spectrum.