{"title":"解决结构可靠性分析中联合基本概率分配的神经网络 copula 函数方法","authors":"Rui‐Shi Yang, Li‐Jun Sun, Hai‐Bin Li, Yong Yang","doi":"10.1002/qre.3568","DOIUrl":null,"url":null,"abstract":"Applying evidence theory to structural reliability analysis under epistemic uncertainty, it is necessary to consider the correlation of evidence variables. Among them, solving the joint basic probability assignment (BPA) of the evidence variables is a crucial link. In this study, a solution method of joint BPA based on neural network copula function is proposed. This method is to automatically construct copula function through neural network, which avoids the process of selecting the optimal copula function. Firstly, the neural network copula function is constructed based on the sample set of evidence variables. Then, the expression for solving the joint BPA using the neural network copula function is derived through vectors. Furthermore, the expression is used to map the marginal BPA of evidence variables to joint BPA, thus realizing the solution of joint BPA. Finally, the effectiveness of this method is verified by three examples. The results show that the neural network copula function describes the data distribution better than the optimal copula function selected by the traditional method. In addition, there is actually an error in solving the reliability intervals using the traditional optimal copula function method, whereas the results of this paper's neural network copula function method are more accurate and better for decision making.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":"10 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A neural network copula function approach for solving joint basic probability assignment in structural reliability analysis\",\"authors\":\"Rui‐Shi Yang, Li‐Jun Sun, Hai‐Bin Li, Yong Yang\",\"doi\":\"10.1002/qre.3568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applying evidence theory to structural reliability analysis under epistemic uncertainty, it is necessary to consider the correlation of evidence variables. Among them, solving the joint basic probability assignment (BPA) of the evidence variables is a crucial link. In this study, a solution method of joint BPA based on neural network copula function is proposed. This method is to automatically construct copula function through neural network, which avoids the process of selecting the optimal copula function. Firstly, the neural network copula function is constructed based on the sample set of evidence variables. Then, the expression for solving the joint BPA using the neural network copula function is derived through vectors. Furthermore, the expression is used to map the marginal BPA of evidence variables to joint BPA, thus realizing the solution of joint BPA. Finally, the effectiveness of this method is verified by three examples. The results show that the neural network copula function describes the data distribution better than the optimal copula function selected by the traditional method. In addition, there is actually an error in solving the reliability intervals using the traditional optimal copula function method, whereas the results of this paper's neural network copula function method are more accurate and better for decision making.\",\"PeriodicalId\":56088,\"journal\":{\"name\":\"Quality and Reliability Engineering International\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality and Reliability Engineering International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/qre.3568\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3568","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
A neural network copula function approach for solving joint basic probability assignment in structural reliability analysis
Applying evidence theory to structural reliability analysis under epistemic uncertainty, it is necessary to consider the correlation of evidence variables. Among them, solving the joint basic probability assignment (BPA) of the evidence variables is a crucial link. In this study, a solution method of joint BPA based on neural network copula function is proposed. This method is to automatically construct copula function through neural network, which avoids the process of selecting the optimal copula function. Firstly, the neural network copula function is constructed based on the sample set of evidence variables. Then, the expression for solving the joint BPA using the neural network copula function is derived through vectors. Furthermore, the expression is used to map the marginal BPA of evidence variables to joint BPA, thus realizing the solution of joint BPA. Finally, the effectiveness of this method is verified by three examples. The results show that the neural network copula function describes the data distribution better than the optimal copula function selected by the traditional method. In addition, there is actually an error in solving the reliability intervals using the traditional optimal copula function method, whereas the results of this paper's neural network copula function method are more accurate and better for decision making.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.