{"title":"基于粒子群算法的共因失效混合冲击模型参数求解研究与验证","authors":"Yinxiao Hu, Hongjuan Ge, Pei He, Hui Jin, Huang Li, Chunran Zou","doi":"10.1002/qre.3569","DOIUrl":null,"url":null,"abstract":"Mixed shock model is an explicit construction method of failure probability model based on component independent failure, system nonfatal shock, and fatal shock failure, which considers common cause failure (CCF) in redundant system. For aerospace systems, a modified mixed shock model is proposed, which considers several components may fail independently and simultaneously in operation. In order to solve the issue that the parameters of the mixed shock model cannot be solved directly based on the failure probability data, a parameter solving method based on particle swarm optimization (PSO) algorithm is proposed. Additionally, the relationship between the failure probability and the gradient of the parameter change is deduced, and the reduced‐order (RO) solution based on the gradient of the parameter change is proposed to improve the efficiency of the solution. A fitness function construction method based on the relative error of the solution probability and the true probability is proposed to improve the probability solution accuracy of multicomponent failure. The nonlinear inertia factor optimization method combined with fitness change is studied to improve the particle swarm dynamics. The accuracy of the results of different parameters solving sequence and different PSO methods are compared, and the effectiveness of the RO solution is verified. The results of the mixed shock model before and after modification are compared with the different CCF data, which verifies the effectiveness and wide applicability of the modified mixed shock model. The results show that the modified mixed shock model for CCF and its parameter solution method can significantly improve the probability solution accuracy of all components failure, and also provide a new theoretical basis and solution method for the quantitative analysis of multiredundant system failure.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":"60 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research and verification on parameter solution of mixed shock model for common cause failure based on particle swarm algorithm\",\"authors\":\"Yinxiao Hu, Hongjuan Ge, Pei He, Hui Jin, Huang Li, Chunran Zou\",\"doi\":\"10.1002/qre.3569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mixed shock model is an explicit construction method of failure probability model based on component independent failure, system nonfatal shock, and fatal shock failure, which considers common cause failure (CCF) in redundant system. For aerospace systems, a modified mixed shock model is proposed, which considers several components may fail independently and simultaneously in operation. In order to solve the issue that the parameters of the mixed shock model cannot be solved directly based on the failure probability data, a parameter solving method based on particle swarm optimization (PSO) algorithm is proposed. Additionally, the relationship between the failure probability and the gradient of the parameter change is deduced, and the reduced‐order (RO) solution based on the gradient of the parameter change is proposed to improve the efficiency of the solution. A fitness function construction method based on the relative error of the solution probability and the true probability is proposed to improve the probability solution accuracy of multicomponent failure. The nonlinear inertia factor optimization method combined with fitness change is studied to improve the particle swarm dynamics. The accuracy of the results of different parameters solving sequence and different PSO methods are compared, and the effectiveness of the RO solution is verified. The results of the mixed shock model before and after modification are compared with the different CCF data, which verifies the effectiveness and wide applicability of the modified mixed shock model. The results show that the modified mixed shock model for CCF and its parameter solution method can significantly improve the probability solution accuracy of all components failure, and also provide a new theoretical basis and solution method for the quantitative analysis of multiredundant system failure.\",\"PeriodicalId\":56088,\"journal\":{\"name\":\"Quality and Reliability Engineering International\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality and Reliability Engineering International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/qre.3569\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3569","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Research and verification on parameter solution of mixed shock model for common cause failure based on particle swarm algorithm
Mixed shock model is an explicit construction method of failure probability model based on component independent failure, system nonfatal shock, and fatal shock failure, which considers common cause failure (CCF) in redundant system. For aerospace systems, a modified mixed shock model is proposed, which considers several components may fail independently and simultaneously in operation. In order to solve the issue that the parameters of the mixed shock model cannot be solved directly based on the failure probability data, a parameter solving method based on particle swarm optimization (PSO) algorithm is proposed. Additionally, the relationship between the failure probability and the gradient of the parameter change is deduced, and the reduced‐order (RO) solution based on the gradient of the parameter change is proposed to improve the efficiency of the solution. A fitness function construction method based on the relative error of the solution probability and the true probability is proposed to improve the probability solution accuracy of multicomponent failure. The nonlinear inertia factor optimization method combined with fitness change is studied to improve the particle swarm dynamics. The accuracy of the results of different parameters solving sequence and different PSO methods are compared, and the effectiveness of the RO solution is verified. The results of the mixed shock model before and after modification are compared with the different CCF data, which verifies the effectiveness and wide applicability of the modified mixed shock model. The results show that the modified mixed shock model for CCF and its parameter solution method can significantly improve the probability solution accuracy of all components failure, and also provide a new theoretical basis and solution method for the quantitative analysis of multiredundant system failure.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.