ESKEMAP:基于草图的精确读取映射

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tizian Schulz, Paul Medvedev
{"title":"ESKEMAP:基于草图的精确读取映射","authors":"Tizian Schulz, Paul Medvedev","doi":"10.1186/s13015-024-00261-7","DOIUrl":null,"url":null,"abstract":"Given a sequencing read, the broad goal of read mapping is to find the location(s) in the reference genome that have a “similar sequence”. Traditionally, “similar sequence” was defined as having a high alignment score and read mappers were viewed as heuristic solutions to this well-defined problem. For sketch-based mappers, however, there has not been a problem formulation to capture what problem an exact sketch-based mapping algorithm should solve. Moreover, there is no sketch-based method that can find all possible mapping positions for a read above a certain score threshold. In this paper, we formulate the problem of read mapping at the level of sequence sketches. We give an exact dynamic programming algorithm that finds all hits above a given similarity threshold. It runs in $$\\mathcal {O} (|t| + |p| + \\ell ^2)$$ time and $$\\mathcal {O} (\\ell \\log \\ell )$$ space, where |t| is the number of $$k$$ -mers inside the sketch of the reference, |p| is the number of $$k$$ -mers inside the read’s sketch and $$\\ell$$ is the number of times that $$k$$ -mers from the pattern sketch occur in the sketch of the text. We evaluate our algorithm’s performance in mapping long reads to the T2T assembly of human chromosome Y, where ampliconic regions make it desirable to find all good mapping positions. For an equivalent level of precision as minimap2, the recall of our algorithm is 0.88, compared to only 0.76 of minimap2.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ESKEMAP: exact sketch-based read mapping\",\"authors\":\"Tizian Schulz, Paul Medvedev\",\"doi\":\"10.1186/s13015-024-00261-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a sequencing read, the broad goal of read mapping is to find the location(s) in the reference genome that have a “similar sequence”. Traditionally, “similar sequence” was defined as having a high alignment score and read mappers were viewed as heuristic solutions to this well-defined problem. For sketch-based mappers, however, there has not been a problem formulation to capture what problem an exact sketch-based mapping algorithm should solve. Moreover, there is no sketch-based method that can find all possible mapping positions for a read above a certain score threshold. In this paper, we formulate the problem of read mapping at the level of sequence sketches. We give an exact dynamic programming algorithm that finds all hits above a given similarity threshold. It runs in $$\\\\mathcal {O} (|t| + |p| + \\\\ell ^2)$$ time and $$\\\\mathcal {O} (\\\\ell \\\\log \\\\ell )$$ space, where |t| is the number of $$k$$ -mers inside the sketch of the reference, |p| is the number of $$k$$ -mers inside the read’s sketch and $$\\\\ell$$ is the number of times that $$k$$ -mers from the pattern sketch occur in the sketch of the text. We evaluate our algorithm’s performance in mapping long reads to the T2T assembly of human chromosome Y, where ampliconic regions make it desirable to find all good mapping positions. For an equivalent level of precision as minimap2, the recall of our algorithm is 0.88, compared to only 0.76 of minimap2.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13015-024-00261-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13015-024-00261-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

给定一个测序读数,读数映射的总体目标是找到参考基因组中具有 "相似序列 "的位置。传统上,"相似序列 "被定义为具有较高的比对得分,读取映射器被视为这一明确问题的启发式解决方案。然而,对于基于草图的映射器来说,还没有一个问题表述来说明基于草图的精确映射算法应该解决什么问题。此外,目前还没有一种基于草图的方法能为超过一定分数阈值的读数找到所有可能的映射位置。在本文中,我们从序列草图的层面提出了读取映射问题。我们给出了一种精确的动态编程算法,该算法能找到超过给定相似度阈值的所有映射位置。它的运行时间为 $$\mathcal {O} (|t| + |p| + \ell ^2)$$,运行空间为 $$\mathcal {O} (\ell \log \ell )$$,其中 |t| 是参照草图内 $$k$$ -mers的数量、|p|是阅读草图中 $$k$ -mers的数量,$$\ell$$是模式草图中 $$k$ -mers在文本草图中出现的次数。我们评估了我们的算法在将长读数映射到人类 Y 染色体的 T2T 组装中的性能,在该组装中,扩增区域使得找到所有好的映射位置成为了理想。在精度与 minimap2 相当的情况下,我们算法的召回率为 0.88,而 minimap2 只有 0.76。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ESKEMAP: exact sketch-based read mapping
Given a sequencing read, the broad goal of read mapping is to find the location(s) in the reference genome that have a “similar sequence”. Traditionally, “similar sequence” was defined as having a high alignment score and read mappers were viewed as heuristic solutions to this well-defined problem. For sketch-based mappers, however, there has not been a problem formulation to capture what problem an exact sketch-based mapping algorithm should solve. Moreover, there is no sketch-based method that can find all possible mapping positions for a read above a certain score threshold. In this paper, we formulate the problem of read mapping at the level of sequence sketches. We give an exact dynamic programming algorithm that finds all hits above a given similarity threshold. It runs in $$\mathcal {O} (|t| + |p| + \ell ^2)$$ time and $$\mathcal {O} (\ell \log \ell )$$ space, where |t| is the number of $$k$$ -mers inside the sketch of the reference, |p| is the number of $$k$$ -mers inside the read’s sketch and $$\ell$$ is the number of times that $$k$$ -mers from the pattern sketch occur in the sketch of the text. We evaluate our algorithm’s performance in mapping long reads to the T2T assembly of human chromosome Y, where ampliconic regions make it desirable to find all good mapping positions. For an equivalent level of precision as minimap2, the recall of our algorithm is 0.88, compared to only 0.76 of minimap2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信