利用局部线性近似在图形模型中进行最大后验估计

Pub Date : 2024-05-01 DOI:10.1002/sta4.682
Ksheera Sagar, Jyotishka Datta, Sayantan Banerjee, Anindya Bhadra
{"title":"利用局部线性近似在图形模型中进行最大后验估计","authors":"Ksheera Sagar, Jyotishka Datta, Sayantan Banerjee, Anindya Bhadra","doi":"10.1002/sta4.682","DOIUrl":null,"url":null,"abstract":"Sparse structure learning in high‐dimensional Gaussian graphical models is an important problem in multivariate statistical inference, since the sparsity pattern naturally encodes the conditional independence relationship among variables. However, maximum a posteriori (MAP) estimation is challenging under hierarchical prior models, and traditional numerical optimization routines or expectation–maximization algorithms are difficult to implement. To this end, our contribution is a novel local linear approximation scheme that circumvents this issue using a very simple computational algorithm. Most importantly, the condition under which our algorithm is guaranteed to converge to the MAP estimate is explicitly stated and is shown to cover a broad class of completely monotone priors, including the graphical horseshoe. Further, the resulting MAP estimate is shown to be sparse and consistent in the ‐norm. Numerical results validate the speed, scalability and statistical performance of the proposed method.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum a posteriori estimation in graphical models using local linear approximation\",\"authors\":\"Ksheera Sagar, Jyotishka Datta, Sayantan Banerjee, Anindya Bhadra\",\"doi\":\"10.1002/sta4.682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse structure learning in high‐dimensional Gaussian graphical models is an important problem in multivariate statistical inference, since the sparsity pattern naturally encodes the conditional independence relationship among variables. However, maximum a posteriori (MAP) estimation is challenging under hierarchical prior models, and traditional numerical optimization routines or expectation–maximization algorithms are difficult to implement. To this end, our contribution is a novel local linear approximation scheme that circumvents this issue using a very simple computational algorithm. Most importantly, the condition under which our algorithm is guaranteed to converge to the MAP estimate is explicitly stated and is shown to cover a broad class of completely monotone priors, including the graphical horseshoe. Further, the resulting MAP estimate is shown to be sparse and consistent in the ‐norm. Numerical results validate the speed, scalability and statistical performance of the proposed method.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高维高斯图形模型中的稀疏结构学习是多元统计推断中的一个重要问题,因为稀疏模式自然地编码了变量之间的条件独立性关系。然而,在分层先验模型下,最大后验(MAP)估计具有挑战性,传统的数值优化程序或期望最大化算法难以实现。为此,我们提出了一种新颖的局部线性近似方案,利用非常简单的计算算法规避了这一问题。最重要的是,我们明确提出了保证算法收敛到 MAP 估计值的条件,并证明该条件涵盖了包括图形马蹄在内的一大类完全单调先验。此外,还证明了所得到的 MAP 估计值是稀疏的,并且在-正态下是一致的。数值结果验证了所提方法的速度、可扩展性和统计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Maximum a posteriori estimation in graphical models using local linear approximation
Sparse structure learning in high‐dimensional Gaussian graphical models is an important problem in multivariate statistical inference, since the sparsity pattern naturally encodes the conditional independence relationship among variables. However, maximum a posteriori (MAP) estimation is challenging under hierarchical prior models, and traditional numerical optimization routines or expectation–maximization algorithms are difficult to implement. To this end, our contribution is a novel local linear approximation scheme that circumvents this issue using a very simple computational algorithm. Most importantly, the condition under which our algorithm is guaranteed to converge to the MAP estimate is explicitly stated and is shown to cover a broad class of completely monotone priors, including the graphical horseshoe. Further, the resulting MAP estimate is shown to be sparse and consistent in the ‐norm. Numerical results validate the speed, scalability and statistical performance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信