Zhao Jin, Yixuan Hou, Xinzhe Que, Yongchao Zhou, Yiping Zhang
{"title":"植硅酸镁锂悬浮液中气体侵入模式的表征和识别","authors":"Zhao Jin, Yixuan Hou, Xinzhe Que, Yongchao Zhou, Yiping Zhang","doi":"10.1007/s00397-024-01453-z","DOIUrl":null,"url":null,"abstract":"<div><p>In quasi-two-dimensional conditions, different invasion patterns can be observed when a fluid displaces another fluid with a higher viscosity. The transition from interfacial instability to fracture during gas invasion remained poorly understood, and classification criteria for different invasion patterns demanded further improvement. In this study, single-point compressed gas injection experiments were conducted in magnesium lithium phyllosilicate (MLPS) suspensions in a rectangular Hele-Shaw cell. Interestingly, with the increase of the injection pressure and the decrease of the concentration of MLPS suspension, the gas invasion pattern underwent a transition from viscous elastic fracture, elastic fracture, elastic viscous fingering to viscous fingering, in which viscous elastic fracture was observed for the first times. We detailly discuss the characteristics and occurrence conditions of each invasion pattern. Furthermore, by analyzing the velocity field of each invasion pattern, it is found that the relationship between the velocity direction around the gas and the gas growth direction varies with different invasion patterns. A simple and effective quantitative indicator is constructed to distinguish the different invasion patterns. Following the identification of invasion patterns, a further investigation was conducted into the relationship between invasion patterns and experimental conditions. By utilizing the relationships among injection conditions and material rheological properties, two dimensionless numbers, Bingham number and Weissenberg number, are conducted, which have an impact on the various invasion patterns and invasion process. A unified phase diagram based on the Bingham number and Weissenberg number was also proposed to incorporate the possible gas invasion patterns in the MLPS suspension.</p></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization and identification of gas invasion patterns in magnesium lithium phyllosilicate suspensions\",\"authors\":\"Zhao Jin, Yixuan Hou, Xinzhe Que, Yongchao Zhou, Yiping Zhang\",\"doi\":\"10.1007/s00397-024-01453-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In quasi-two-dimensional conditions, different invasion patterns can be observed when a fluid displaces another fluid with a higher viscosity. The transition from interfacial instability to fracture during gas invasion remained poorly understood, and classification criteria for different invasion patterns demanded further improvement. In this study, single-point compressed gas injection experiments were conducted in magnesium lithium phyllosilicate (MLPS) suspensions in a rectangular Hele-Shaw cell. Interestingly, with the increase of the injection pressure and the decrease of the concentration of MLPS suspension, the gas invasion pattern underwent a transition from viscous elastic fracture, elastic fracture, elastic viscous fingering to viscous fingering, in which viscous elastic fracture was observed for the first times. We detailly discuss the characteristics and occurrence conditions of each invasion pattern. Furthermore, by analyzing the velocity field of each invasion pattern, it is found that the relationship between the velocity direction around the gas and the gas growth direction varies with different invasion patterns. A simple and effective quantitative indicator is constructed to distinguish the different invasion patterns. Following the identification of invasion patterns, a further investigation was conducted into the relationship between invasion patterns and experimental conditions. By utilizing the relationships among injection conditions and material rheological properties, two dimensionless numbers, Bingham number and Weissenberg number, are conducted, which have an impact on the various invasion patterns and invasion process. A unified phase diagram based on the Bingham number and Weissenberg number was also proposed to incorporate the possible gas invasion patterns in the MLPS suspension.</p></div>\",\"PeriodicalId\":755,\"journal\":{\"name\":\"Rheologica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rheologica Acta\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00397-024-01453-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00397-024-01453-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Characterization and identification of gas invasion patterns in magnesium lithium phyllosilicate suspensions
In quasi-two-dimensional conditions, different invasion patterns can be observed when a fluid displaces another fluid with a higher viscosity. The transition from interfacial instability to fracture during gas invasion remained poorly understood, and classification criteria for different invasion patterns demanded further improvement. In this study, single-point compressed gas injection experiments were conducted in magnesium lithium phyllosilicate (MLPS) suspensions in a rectangular Hele-Shaw cell. Interestingly, with the increase of the injection pressure and the decrease of the concentration of MLPS suspension, the gas invasion pattern underwent a transition from viscous elastic fracture, elastic fracture, elastic viscous fingering to viscous fingering, in which viscous elastic fracture was observed for the first times. We detailly discuss the characteristics and occurrence conditions of each invasion pattern. Furthermore, by analyzing the velocity field of each invasion pattern, it is found that the relationship between the velocity direction around the gas and the gas growth direction varies with different invasion patterns. A simple and effective quantitative indicator is constructed to distinguish the different invasion patterns. Following the identification of invasion patterns, a further investigation was conducted into the relationship between invasion patterns and experimental conditions. By utilizing the relationships among injection conditions and material rheological properties, two dimensionless numbers, Bingham number and Weissenberg number, are conducted, which have an impact on the various invasion patterns and invasion process. A unified phase diagram based on the Bingham number and Weissenberg number was also proposed to incorporate the possible gas invasion patterns in the MLPS suspension.
期刊介绍:
"Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications.
The Scope of Rheologica Acta includes:
- Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology
- Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food.
- Rheology of Solids, chemo-rheology
- Electro and magnetorheology
- Theory of rheology
- Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities
- Interfacial rheology
Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."