关于 Bochner-Schoenberg-Eberlein 和 Bochner-Schoenberg-Eberlein 模块性质的简单证明

IF 1.9 3区 数学 Q1 MATHEMATICS
Shirin Tavkoli, Rasoul Abazari, Ali Jabbari
{"title":"关于 Bochner-Schoenberg-Eberlein 和 Bochner-Schoenberg-Eberlein 模块性质的简单证明","authors":"Shirin Tavkoli, Rasoul Abazari, Ali Jabbari","doi":"10.1155/2024/5893357","DOIUrl":null,"url":null,"abstract":"Let <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 10.0819 8.68572\" width=\"10.0819pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-89\"></use></g></svg> be a nonempty set, <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.2729 8.68572\" width=\"9.2729pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-66\"></use></g></svg> be a commutative Banach algebra, and <span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.34882 17.503 11.7782\" width=\"17.503pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,9.872,0)\"></path></g></svg><span></span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"21.085183800000003 -8.34882 18.973 11.7782\" width=\"18.973pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,21.135,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,32.477,0)\"></path></g></svg><span></span><span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"43.6901838 -8.34882 13.517 11.7782\" width=\"13.517pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,43.74,0)\"></path></g></svg>.</span></span> In this paper, we present a concise proof for the result concerning the BSE (Banach space extension) property of <span><svg height=\"12.8091pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.541 28.884 12.8091\" width=\"28.884pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-127\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.047,-5.741)\"><use xlink:href=\"#g50-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.998,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.496,0)\"><use xlink:href=\"#g113-89\"></use></g><g transform=\"matrix(.013,0,0,-0.013,25.92,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"12.8091pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"31.0131838 -10.541 13.873 12.8091\" width=\"13.873pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,31.063,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,40.198,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>.</span></span> Specifically, we establish that <span><svg height=\"12.8091pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.541 28.884 12.8091\" width=\"28.884pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-127\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.047,-5.741)\"><use xlink:href=\"#g50-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.998,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.496,0)\"><use xlink:href=\"#g113-89\"></use></g><g transform=\"matrix(.013,0,0,-0.013,25.92,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.8091pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"31.0131838 -10.541 13.873 12.8091\" width=\"13.873pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,31.063,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,40.198,0)\"><use xlink:href=\"#g113-42\"></use></g></svg></span> possesses the BSE property if and only if <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 10.0819 8.68572\" width=\"10.0819pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-89\"></use></g></svg> is finite and <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.2729 8.68572\" width=\"9.2729pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-66\"></use></g></svg> is BSE. Additionally, we investigate the BSE module property on Banach <span><svg height=\"12.8091pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.541 28.884 12.8091\" width=\"28.884pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-127\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.047,-5.741)\"><use xlink:href=\"#g50-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.998,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.496,0)\"><use xlink:href=\"#g113-89\"></use></g><g transform=\"matrix(.013,0,0,-0.013,25.92,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"12.8091pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"31.0131838 -10.541 13.873 12.8091\" width=\"13.873pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,31.063,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,40.198,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>-</span></span>modules and demonstrate that a Banach space <span><svg height=\"12.8091pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.541 28.884 12.8091\" width=\"28.884pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-127\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.047,-5.741)\"><use xlink:href=\"#g50-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.998,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.496,0)\"><use xlink:href=\"#g113-89\"></use></g><g transform=\"matrix(.013,0,0,-0.013,25.92,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.8091pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"31.0131838 -10.541 13.208 12.8091\" width=\"13.208pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,31.063,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,39.544,0)\"><use xlink:href=\"#g113-42\"></use></g></svg></span> serves as a BSE Banach <span><svg height=\"12.8091pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.541 28.884 12.8091\" width=\"28.884pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-127\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.047,-5.741)\"><use xlink:href=\"#g50-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.998,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.496,0)\"><use xlink:href=\"#g113-89\"></use></g><g transform=\"matrix(.013,0,0,-0.013,25.92,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"12.8091pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"31.0131838 -10.541 13.873 12.8091\" width=\"13.873pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,31.063,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,40.198,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>-</span></span>module if and only if <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 10.0819 8.68572\" width=\"10.0819pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-89\"></use></g></svg> is finite and <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 8.6074 8.68572\" width=\"8.6074pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-90\"></use></g></svg> represents a BSE Banach <span><svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.2729 8.68572\" width=\"9.2729pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-66\"></use></g></svg>-</span>module.","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"96 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple Proofs for Bochner-Schoenberg-Eberlein and the Bochner-Schoenberg-Eberlein Module Properties on\",\"authors\":\"Shirin Tavkoli, Rasoul Abazari, Ali Jabbari\",\"doi\":\"10.1155/2024/5893357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 10.0819 8.68572\\\" width=\\\"10.0819pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g></svg> be a nonempty set, <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.2729 8.68572\\\" width=\\\"9.2729pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g></svg> be a commutative Banach algebra, and <span><svg height=\\\"11.7782pt\\\" style=\\\"vertical-align:-3.42938pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.34882 17.503 11.7782\\\" width=\\\"17.503pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,9.872,0)\\\"></path></g></svg><span></span><svg height=\\\"11.7782pt\\\" style=\\\"vertical-align:-3.42938pt\\\" version=\\\"1.1\\\" viewbox=\\\"21.085183800000003 -8.34882 18.973 11.7782\\\" width=\\\"18.973pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,21.135,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,32.477,0)\\\"></path></g></svg><span></span><span><svg height=\\\"11.7782pt\\\" style=\\\"vertical-align:-3.42938pt\\\" version=\\\"1.1\\\" viewbox=\\\"43.6901838 -8.34882 13.517 11.7782\\\" width=\\\"13.517pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,43.74,0)\\\"></path></g></svg>.</span></span> In this paper, we present a concise proof for the result concerning the BSE (Banach space extension) property of <span><svg height=\\\"12.8091pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -10.541 28.884 12.8091\\\" width=\\\"28.884pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-127\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.047,-5.741)\\\"><use xlink:href=\\\"#g50-113\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.998,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.496,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,25.92,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><span><svg height=\\\"12.8091pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"31.0131838 -10.541 13.873 12.8091\\\" width=\\\"13.873pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,31.063,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,40.198,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg>.</span></span> Specifically, we establish that <span><svg height=\\\"12.8091pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -10.541 28.884 12.8091\\\" width=\\\"28.884pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-127\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.047,-5.741)\\\"><use xlink:href=\\\"#g50-113\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.998,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.496,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,25.92,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"12.8091pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"31.0131838 -10.541 13.873 12.8091\\\" width=\\\"13.873pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,31.063,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,40.198,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg></span> possesses the BSE property if and only if <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 10.0819 8.68572\\\" width=\\\"10.0819pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g></svg> is finite and <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.2729 8.68572\\\" width=\\\"9.2729pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g></svg> is BSE. Additionally, we investigate the BSE module property on Banach <span><svg height=\\\"12.8091pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -10.541 28.884 12.8091\\\" width=\\\"28.884pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-127\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.047,-5.741)\\\"><use xlink:href=\\\"#g50-113\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.998,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.496,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,25.92,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><span><svg height=\\\"12.8091pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"31.0131838 -10.541 13.873 12.8091\\\" width=\\\"13.873pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,31.063,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,40.198,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg>-</span></span>modules and demonstrate that a Banach space <span><svg height=\\\"12.8091pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -10.541 28.884 12.8091\\\" width=\\\"28.884pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-127\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.047,-5.741)\\\"><use xlink:href=\\\"#g50-113\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.998,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.496,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,25.92,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"12.8091pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"31.0131838 -10.541 13.208 12.8091\\\" width=\\\"13.208pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,31.063,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,39.544,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg></span> serves as a BSE Banach <span><svg height=\\\"12.8091pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -10.541 28.884 12.8091\\\" width=\\\"28.884pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-127\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.047,-5.741)\\\"><use xlink:href=\\\"#g50-113\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.998,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.496,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,25.92,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><span><svg height=\\\"12.8091pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"31.0131838 -10.541 13.873 12.8091\\\" width=\\\"13.873pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,31.063,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,40.198,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg>-</span></span>module if and only if <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 10.0819 8.68572\\\" width=\\\"10.0819pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g></svg> is finite and <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 8.6074 8.68572\\\" width=\\\"8.6074pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-90\\\"></use></g></svg> represents a BSE Banach <span><svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.2729 8.68572\\\" width=\\\"9.2729pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g></svg>-</span>module.\",\"PeriodicalId\":15840,\"journal\":{\"name\":\"Journal of Function Spaces\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Function Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5893357\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Function Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/5893357","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让是一个非空集,是一个交换巴拿赫代数,并且是.在本文中,我们对有关.的 BSE(巴拿赫空间扩展)性质的结果提出了一个简明的证明。 具体地说,我们确定,当且仅当是有限的并且是 BSE 时,.具有 BSE 性质。此外,我们还研究了巴拿赫模块的 BSE 模块性质,并证明当且仅当 是有限的且代表一个 BSE 巴拿赫模块时,巴拿赫空间才是一个 BSE 巴拿赫模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple Proofs for Bochner-Schoenberg-Eberlein and the Bochner-Schoenberg-Eberlein Module Properties on
Let be a nonempty set, be a commutative Banach algebra, and . In this paper, we present a concise proof for the result concerning the BSE (Banach space extension) property of . Specifically, we establish that possesses the BSE property if and only if is finite and is BSE. Additionally, we investigate the BSE module property on Banach -modules and demonstrate that a Banach space serves as a BSE Banach -module if and only if is finite and represents a BSE Banach -module.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Function Spaces
Journal of Function Spaces MATHEMATICS, APPLIEDMATHEMATICS -MATHEMATICS
CiteScore
4.10
自引率
10.50%
发文量
451
审稿时长
15 weeks
期刊介绍: Journal of Function Spaces (formerly titled Journal of Function Spaces and Applications) publishes papers on all aspects of function spaces, functional analysis, and their employment across other mathematical disciplines. As well as original research, Journal of Function Spaces also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信