求助PDF
{"title":"关于 Bochner-Schoenberg-Eberlein 和 Bochner-Schoenberg-Eberlein 模块性质的简单证明","authors":"Shirin Tavkoli, Rasoul Abazari, Ali Jabbari","doi":"10.1155/2024/5893357","DOIUrl":null,"url":null,"abstract":"Let <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 10.0819 8.68572\" width=\"10.0819pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-89\"></use></g></svg> be a nonempty set, <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.2729 8.68572\" width=\"9.2729pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-66\"></use></g></svg> be a commutative Banach algebra, and <span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.34882 17.503 11.7782\" width=\"17.503pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,9.872,0)\"></path></g></svg><span></span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"21.085183800000003 -8.34882 18.973 11.7782\" width=\"18.973pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,21.135,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,32.477,0)\"></path></g></svg><span></span><span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"43.6901838 -8.34882 13.517 11.7782\" width=\"13.517pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,43.74,0)\"></path></g></svg>.</span></span> In this paper, we present a concise proof for the result concerning the BSE (Banach space extension) property of <span><svg height=\"12.8091pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.541 28.884 12.8091\" width=\"28.884pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-127\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.047,-5.741)\"><use xlink:href=\"#g50-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.998,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.496,0)\"><use xlink:href=\"#g113-89\"></use></g><g transform=\"matrix(.013,0,0,-0.013,25.92,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"12.8091pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"31.0131838 -10.541 13.873 12.8091\" width=\"13.873pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,31.063,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,40.198,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>.</span></span> Specifically, we establish that <span><svg height=\"12.8091pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.541 28.884 12.8091\" width=\"28.884pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-127\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.047,-5.741)\"><use xlink:href=\"#g50-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.998,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.496,0)\"><use xlink:href=\"#g113-89\"></use></g><g transform=\"matrix(.013,0,0,-0.013,25.92,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.8091pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"31.0131838 -10.541 13.873 12.8091\" width=\"13.873pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,31.063,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,40.198,0)\"><use xlink:href=\"#g113-42\"></use></g></svg></span> possesses the BSE property if and only if <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 10.0819 8.68572\" width=\"10.0819pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-89\"></use></g></svg> is finite and <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.2729 8.68572\" width=\"9.2729pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-66\"></use></g></svg> is BSE. Additionally, we investigate the BSE module property on Banach <span><svg height=\"12.8091pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.541 28.884 12.8091\" width=\"28.884pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-127\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.047,-5.741)\"><use xlink:href=\"#g50-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.998,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.496,0)\"><use xlink:href=\"#g113-89\"></use></g><g transform=\"matrix(.013,0,0,-0.013,25.92,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"12.8091pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"31.0131838 -10.541 13.873 12.8091\" width=\"13.873pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,31.063,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,40.198,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>-</span></span>modules and demonstrate that a Banach space <span><svg height=\"12.8091pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.541 28.884 12.8091\" width=\"28.884pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-127\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.047,-5.741)\"><use xlink:href=\"#g50-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.998,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.496,0)\"><use xlink:href=\"#g113-89\"></use></g><g transform=\"matrix(.013,0,0,-0.013,25.92,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.8091pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"31.0131838 -10.541 13.208 12.8091\" width=\"13.208pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,31.063,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,39.544,0)\"><use xlink:href=\"#g113-42\"></use></g></svg></span> serves as a BSE Banach <span><svg height=\"12.8091pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.541 28.884 12.8091\" width=\"28.884pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-127\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.047,-5.741)\"><use xlink:href=\"#g50-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.998,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.496,0)\"><use xlink:href=\"#g113-89\"></use></g><g transform=\"matrix(.013,0,0,-0.013,25.92,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"12.8091pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"31.0131838 -10.541 13.873 12.8091\" width=\"13.873pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,31.063,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,40.198,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>-</span></span>module if and only if <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 10.0819 8.68572\" width=\"10.0819pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-89\"></use></g></svg> is finite and <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 8.6074 8.68572\" width=\"8.6074pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-90\"></use></g></svg> represents a BSE Banach <span><svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.2729 8.68572\" width=\"9.2729pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-66\"></use></g></svg>-</span>module.","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"96 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple Proofs for Bochner-Schoenberg-Eberlein and the Bochner-Schoenberg-Eberlein Module Properties on\",\"authors\":\"Shirin Tavkoli, Rasoul Abazari, Ali Jabbari\",\"doi\":\"10.1155/2024/5893357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 10.0819 8.68572\\\" width=\\\"10.0819pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g></svg> be a nonempty set, <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.2729 8.68572\\\" width=\\\"9.2729pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g></svg> be a commutative Banach algebra, and <span><svg height=\\\"11.7782pt\\\" style=\\\"vertical-align:-3.42938pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.34882 17.503 11.7782\\\" width=\\\"17.503pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,9.872,0)\\\"></path></g></svg><span></span><svg height=\\\"11.7782pt\\\" style=\\\"vertical-align:-3.42938pt\\\" version=\\\"1.1\\\" viewbox=\\\"21.085183800000003 -8.34882 18.973 11.7782\\\" width=\\\"18.973pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,21.135,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,32.477,0)\\\"></path></g></svg><span></span><span><svg height=\\\"11.7782pt\\\" style=\\\"vertical-align:-3.42938pt\\\" version=\\\"1.1\\\" viewbox=\\\"43.6901838 -8.34882 13.517 11.7782\\\" width=\\\"13.517pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,43.74,0)\\\"></path></g></svg>.</span></span> In this paper, we present a concise proof for the result concerning the BSE (Banach space extension) property of <span><svg height=\\\"12.8091pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -10.541 28.884 12.8091\\\" width=\\\"28.884pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-127\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.047,-5.741)\\\"><use xlink:href=\\\"#g50-113\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.998,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.496,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,25.92,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><span><svg height=\\\"12.8091pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"31.0131838 -10.541 13.873 12.8091\\\" width=\\\"13.873pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,31.063,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,40.198,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg>.</span></span> Specifically, we establish that <span><svg height=\\\"12.8091pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -10.541 28.884 12.8091\\\" width=\\\"28.884pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-127\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.047,-5.741)\\\"><use xlink:href=\\\"#g50-113\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.998,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.496,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,25.92,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"12.8091pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"31.0131838 -10.541 13.873 12.8091\\\" width=\\\"13.873pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,31.063,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,40.198,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg></span> possesses the BSE property if and only if <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 10.0819 8.68572\\\" width=\\\"10.0819pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g></svg> is finite and <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.2729 8.68572\\\" width=\\\"9.2729pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g></svg> is BSE. Additionally, we investigate the BSE module property on Banach <span><svg height=\\\"12.8091pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -10.541 28.884 12.8091\\\" width=\\\"28.884pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-127\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.047,-5.741)\\\"><use xlink:href=\\\"#g50-113\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.998,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.496,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,25.92,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><span><svg height=\\\"12.8091pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"31.0131838 -10.541 13.873 12.8091\\\" width=\\\"13.873pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,31.063,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,40.198,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg>-</span></span>modules and demonstrate that a Banach space <span><svg height=\\\"12.8091pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -10.541 28.884 12.8091\\\" width=\\\"28.884pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-127\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.047,-5.741)\\\"><use xlink:href=\\\"#g50-113\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.998,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.496,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,25.92,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"12.8091pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"31.0131838 -10.541 13.208 12.8091\\\" width=\\\"13.208pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,31.063,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,39.544,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg></span> serves as a BSE Banach <span><svg height=\\\"12.8091pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -10.541 28.884 12.8091\\\" width=\\\"28.884pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-127\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.047,-5.741)\\\"><use xlink:href=\\\"#g50-113\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.998,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.496,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,25.92,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><span><svg height=\\\"12.8091pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"31.0131838 -10.541 13.873 12.8091\\\" width=\\\"13.873pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,31.063,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,40.198,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg>-</span></span>module if and only if <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 10.0819 8.68572\\\" width=\\\"10.0819pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g></svg> is finite and <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 8.6074 8.68572\\\" width=\\\"8.6074pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-90\\\"></use></g></svg> represents a BSE Banach <span><svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.2729 8.68572\\\" width=\\\"9.2729pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g></svg>-</span>module.\",\"PeriodicalId\":15840,\"journal\":{\"name\":\"Journal of Function Spaces\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Function Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5893357\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Function Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/5893357","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用