涉及有理项的积分型收缩的-度量空间上的常见定点定理及其在分式积分方程中的应用

IF 1.9 3区 数学 Q1 MATHEMATICS
G. S. Saluja, Hemant Kumar Nashine, Reena Jain, Rabha W. Ibrahim, Hossam A. Nabwey
{"title":"涉及有理项的积分型收缩的-度量空间上的常见定点定理及其在分式积分方程中的应用","authors":"G. S. Saluja, Hemant Kumar Nashine, Reena Jain, Rabha W. Ibrahim, Hossam A. Nabwey","doi":"10.1155/2024/5108481","DOIUrl":null,"url":null,"abstract":"It has been shown that the findings of <span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 7.34169 9.49473\" width=\"7.34169pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>-</span>metric spaces may be deduced from <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 6.25863 8.8423\" width=\"6.25863pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-84\"></use></g></svg>-</span>metric spaces by considering <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 23.324 11.5564\" width=\"23.324pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-101\"></use></g><g transform=\"matrix(.013,0,0,-0.013,7.215,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,11.713,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,20.36,0)\"></path></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"25.4531838 -9.28833 23.25 11.5564\" width=\"23.25pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,25.503,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,32.992,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,41.122,0)\"></path></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"52.3341838 -9.28833 25.02 11.5564\" width=\"25.02pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,52.384,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,61.295,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,65.793,0)\"><use xlink:href=\"#g113-250\"></use></g><g transform=\"matrix(.013,0,0,-0.013,74.44,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"79.5331838 -9.28833 11.61 11.5564\" width=\"11.61pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,79.583,0)\"><use xlink:href=\"#g113-250\"></use></g><g transform=\"matrix(.013,0,0,-0.013,88.229,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"93.3221838 -9.28833 12.431 11.5564\" width=\"12.431pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,93.372,0)\"><use xlink:href=\"#g113-249\"></use></g><g transform=\"matrix(.013,0,0,-0.013,100.861,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>.</span></span> In this study, no such concepts that translate to the outcomes of metric spaces are considered. We establish standard fixed point theorems for integral type contractions involving rational terms in the context of complete <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 6.25863 8.8423\" width=\"6.25863pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-84\"></use></g></svg>-</span>metric spaces and discuss their implications. We also provide examples to illustrate the work. This paper’s findings generalize and expand a number of previously published conclusions. In addition, the abstract conclusions are supported by an application of the Riemann-Liouville calculus to a fractional integral problem and a supportive numerical example.","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"62 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Common Fixed Point Theorems on -Metric Spaces for Integral Type Contractions Involving Rational Terms and Application to Fractional Integral Equation\",\"authors\":\"G. S. Saluja, Hemant Kumar Nashine, Reena Jain, Rabha W. Ibrahim, Hossam A. Nabwey\",\"doi\":\"10.1155/2024/5108481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been shown that the findings of <span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 7.34169 9.49473\\\" width=\\\"7.34169pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg>-</span>metric spaces may be deduced from <span><svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 6.25863 8.8423\\\" width=\\\"6.25863pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-84\\\"></use></g></svg>-</span>metric spaces by considering <span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 23.324 11.5564\\\" width=\\\"23.324pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-101\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,7.215,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,11.713,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,20.36,0)\\\"></path></g></svg><span></span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"25.4531838 -9.28833 23.25 11.5564\\\" width=\\\"23.25pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,25.503,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,32.992,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,41.122,0)\\\"></path></g></svg><span></span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"52.3341838 -9.28833 25.02 11.5564\\\" width=\\\"25.02pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,52.384,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,61.295,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,65.793,0)\\\"><use xlink:href=\\\"#g113-250\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,74.44,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"79.5331838 -9.28833 11.61 11.5564\\\" width=\\\"11.61pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,79.583,0)\\\"><use xlink:href=\\\"#g113-250\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,88.229,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"93.3221838 -9.28833 12.431 11.5564\\\" width=\\\"12.431pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,93.372,0)\\\"><use xlink:href=\\\"#g113-249\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,100.861,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg>.</span></span> In this study, no such concepts that translate to the outcomes of metric spaces are considered. We establish standard fixed point theorems for integral type contractions involving rational terms in the context of complete <span><svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 6.25863 8.8423\\\" width=\\\"6.25863pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-84\\\"></use></g></svg>-</span>metric spaces and discuss their implications. We also provide examples to illustrate the work. This paper’s findings generalize and expand a number of previously published conclusions. In addition, the abstract conclusions are supported by an application of the Riemann-Liouville calculus to a fractional integral problem and a supportive numerical example.\",\"PeriodicalId\":15840,\"journal\":{\"name\":\"Journal of Function Spaces\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Function Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5108481\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Function Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/5108481","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究表明,-度量空间的结果可以通过考虑 。在本研究中,我们没有考虑此类可转化为度量空间结果的概念。我们建立了完整-度量空间中涉及有理项的积分型收缩的标准定点定理,并讨论了它们的意义。我们还举例说明了这项工作。本文的结论概括并扩展了之前发表的一些结论。此外,我们还将黎曼-刘维尔微积分应用于一个分数积分问题,并提供了一个支持性的数值示例来支持这些抽象结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Common Fixed Point Theorems on -Metric Spaces for Integral Type Contractions Involving Rational Terms and Application to Fractional Integral Equation
It has been shown that the findings of -metric spaces may be deduced from -metric spaces by considering . In this study, no such concepts that translate to the outcomes of metric spaces are considered. We establish standard fixed point theorems for integral type contractions involving rational terms in the context of complete -metric spaces and discuss their implications. We also provide examples to illustrate the work. This paper’s findings generalize and expand a number of previously published conclusions. In addition, the abstract conclusions are supported by an application of the Riemann-Liouville calculus to a fractional integral problem and a supportive numerical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Function Spaces
Journal of Function Spaces MATHEMATICS, APPLIEDMATHEMATICS -MATHEMATICS
CiteScore
4.10
自引率
10.50%
发文量
451
审稿时长
15 weeks
期刊介绍: Journal of Function Spaces (formerly titled Journal of Function Spaces and Applications) publishes papers on all aspects of function spaces, functional analysis, and their employment across other mathematical disciplines. As well as original research, Journal of Function Spaces also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信