{"title":"通过纽科姆-本福德分析检测菲律宾公共卫生监测数据中的流行病学异常现象","authors":"Samuel John E Parreño","doi":"10.1093/pubmed/fdae062","DOIUrl":null,"url":null,"abstract":"Background Public health surveillance is vital for monitoring and controlling disease spread. In the Philippines, an effective surveillance system is crucial for managing diverse infectious diseases. The Newcomb-Benford Law (NBL) is a statistical tool known for anomaly detection in various datasets, including those in public health. Methods Using Philippine epidemiological data from 2019 to 2023, this study applied NBL analysis. Diseases included acute flaccid paralysis, diphtheria, measles, rubella, neonatal tetanus, pertussis, chikungunya, dengue, leptospirosis and others. The analysis involved Chi-square tests, Mantissa Arc tests, Mean Absolute Deviation (MAD) and Distortion Factor calculations. Results Most diseases exhibited nonconformity to NBL, except for measles. MAD consistently indicated nonconformity, highlighting potential anomalies. Rabies consistently showed substantial deviations, while leptospirosis exhibited closer alignment, especially in 2021. Annual variations in disease deviations were notable, with acute meningitis encephalitis syndrome in 2019 and influenza-like illness in 2023 having the highest deviations. Conclusions The study provides practical insights for improving Philippine public health surveillance. Despite some diseases showing conformity, deviations suggest data quality issues. Enhancing the PIDSR, especially in diseases with consistent nonconformity, is crucial for accurate monitoring and response. The NBL’s versatility across diverse domains emphasizes its utility for ensuring data integrity and quality assurance.","PeriodicalId":16904,"journal":{"name":"Journal of Public Health","volume":"82 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epidemiological anomaly detection in Philippine public health surveillance data through Newcomb-Benford analysis\",\"authors\":\"Samuel John E Parreño\",\"doi\":\"10.1093/pubmed/fdae062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background Public health surveillance is vital for monitoring and controlling disease spread. In the Philippines, an effective surveillance system is crucial for managing diverse infectious diseases. The Newcomb-Benford Law (NBL) is a statistical tool known for anomaly detection in various datasets, including those in public health. Methods Using Philippine epidemiological data from 2019 to 2023, this study applied NBL analysis. Diseases included acute flaccid paralysis, diphtheria, measles, rubella, neonatal tetanus, pertussis, chikungunya, dengue, leptospirosis and others. The analysis involved Chi-square tests, Mantissa Arc tests, Mean Absolute Deviation (MAD) and Distortion Factor calculations. Results Most diseases exhibited nonconformity to NBL, except for measles. MAD consistently indicated nonconformity, highlighting potential anomalies. Rabies consistently showed substantial deviations, while leptospirosis exhibited closer alignment, especially in 2021. Annual variations in disease deviations were notable, with acute meningitis encephalitis syndrome in 2019 and influenza-like illness in 2023 having the highest deviations. Conclusions The study provides practical insights for improving Philippine public health surveillance. Despite some diseases showing conformity, deviations suggest data quality issues. Enhancing the PIDSR, especially in diseases with consistent nonconformity, is crucial for accurate monitoring and response. The NBL’s versatility across diverse domains emphasizes its utility for ensuring data integrity and quality assurance.\",\"PeriodicalId\":16904,\"journal\":{\"name\":\"Journal of Public Health\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Public Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/pubmed/fdae062\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Public Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/pubmed/fdae062","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Epidemiological anomaly detection in Philippine public health surveillance data through Newcomb-Benford analysis
Background Public health surveillance is vital for monitoring and controlling disease spread. In the Philippines, an effective surveillance system is crucial for managing diverse infectious diseases. The Newcomb-Benford Law (NBL) is a statistical tool known for anomaly detection in various datasets, including those in public health. Methods Using Philippine epidemiological data from 2019 to 2023, this study applied NBL analysis. Diseases included acute flaccid paralysis, diphtheria, measles, rubella, neonatal tetanus, pertussis, chikungunya, dengue, leptospirosis and others. The analysis involved Chi-square tests, Mantissa Arc tests, Mean Absolute Deviation (MAD) and Distortion Factor calculations. Results Most diseases exhibited nonconformity to NBL, except for measles. MAD consistently indicated nonconformity, highlighting potential anomalies. Rabies consistently showed substantial deviations, while leptospirosis exhibited closer alignment, especially in 2021. Annual variations in disease deviations were notable, with acute meningitis encephalitis syndrome in 2019 and influenza-like illness in 2023 having the highest deviations. Conclusions The study provides practical insights for improving Philippine public health surveillance. Despite some diseases showing conformity, deviations suggest data quality issues. Enhancing the PIDSR, especially in diseases with consistent nonconformity, is crucial for accurate monitoring and response. The NBL’s versatility across diverse domains emphasizes its utility for ensuring data integrity and quality assurance.
期刊介绍:
Previous Title Zeitschrift für Gesundheitswissenschaften, Previous Print ISSN 0943-1853, Previous Online ISSN 1613-2238.
The Journal of Public Health: From Theory to Practice is an interdisciplinary publication for the discussion and debate of international public health issues, with a focus on European affairs. It describes the social and individual factors determining the basic conditions of public health, analyzing causal interrelations, and offering a scientifically sound rationale for personal, social and political measures of intervention. Coverage includes contributions from epidemiology, health economics, environmental health, management, social sciences, ethics, and law.
ISSN: 2198-1833 (Print) 1613-2238 (Online)