一维立方 NLS 的多孑子及其稳定性

Herbert Koch, Daniel Tataru
{"title":"一维立方 NLS 的多孑子及其稳定性","authors":"Herbert Koch, Daniel Tataru","doi":"10.1007/s10240-024-00148-8","DOIUrl":null,"url":null,"abstract":"<p>For both the cubic Nonlinear Schrödinger Equation (NLS) as well as the modified Korteweg-de Vries (mKdV) equation in one space dimension we consider the set <span>\\(\\mathbf {M}_{N}\\)</span> of pure <span>\\(N\\)</span>-soliton states, and their associated multisoliton solutions. We prove that (i) the set <span>\\(\\mathbf {M}_{N}\\)</span> is a uniformly smooth manifold, and (ii) the <span>\\(\\mathbf {M}_{N}\\)</span> states are uniformly stable in <span>\\(H^{s}\\)</span>, for each <span>\\(s&gt;-\\frac{1}{2}\\)</span>.</p><p>One main tool in our analysis is an iterated Bäcklund transform, which allows us to nonlinearly add a multisoliton to an existing soliton free state (the soliton addition map) or alternatively to remove a multisoliton from a multisoliton state (the soliton removal map). The properties and the regularity of these maps are extensively studied.</p>","PeriodicalId":516319,"journal":{"name":"Publications mathématiques de l'IHÉS","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multisolitons for the cubic NLS in 1-d and their stability\",\"authors\":\"Herbert Koch, Daniel Tataru\",\"doi\":\"10.1007/s10240-024-00148-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For both the cubic Nonlinear Schrödinger Equation (NLS) as well as the modified Korteweg-de Vries (mKdV) equation in one space dimension we consider the set <span>\\\\(\\\\mathbf {M}_{N}\\\\)</span> of pure <span>\\\\(N\\\\)</span>-soliton states, and their associated multisoliton solutions. We prove that (i) the set <span>\\\\(\\\\mathbf {M}_{N}\\\\)</span> is a uniformly smooth manifold, and (ii) the <span>\\\\(\\\\mathbf {M}_{N}\\\\)</span> states are uniformly stable in <span>\\\\(H^{s}\\\\)</span>, for each <span>\\\\(s&gt;-\\\\frac{1}{2}\\\\)</span>.</p><p>One main tool in our analysis is an iterated Bäcklund transform, which allows us to nonlinearly add a multisoliton to an existing soliton free state (the soliton addition map) or alternatively to remove a multisoliton from a multisoliton state (the soliton removal map). The properties and the regularity of these maps are extensively studied.</p>\",\"PeriodicalId\":516319,\"journal\":{\"name\":\"Publications mathématiques de l'IHÉS\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications mathématiques de l'IHÉS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10240-024-00148-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications mathématiques de l'IHÉS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10240-024-00148-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于一个空间维度的立方非线性薛定谔方程(NLS)和修正的科特韦格-德-弗里斯方程(mKdV),我们考虑了纯\(N\)-孑子态的集合\(\mathbf {M}_{N}\) 及其相关的多孑子解。我们证明:(i) \mathbf {M}_{N}\ 是一个均匀光滑的流形;(ii) 对于每个 \(s>-\frac{1}{2}\),\(mathbf {M}_{N}\) 状态在 \(H^{s})中都是均匀稳定的。我们分析中的一个主要工具是迭代贝克伦德变换,它允许我们非线性地在现有的无孤子状态中添加一个多孤子(孤子添加图),或者从一个多孤子状态中移除一个多孤子(孤子移除图)。我们对这些图的特性和规律性进行了广泛研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multisolitons for the cubic NLS in 1-d and their stability

For both the cubic Nonlinear Schrödinger Equation (NLS) as well as the modified Korteweg-de Vries (mKdV) equation in one space dimension we consider the set \(\mathbf {M}_{N}\) of pure \(N\)-soliton states, and their associated multisoliton solutions. We prove that (i) the set \(\mathbf {M}_{N}\) is a uniformly smooth manifold, and (ii) the \(\mathbf {M}_{N}\) states are uniformly stable in \(H^{s}\), for each \(s>-\frac{1}{2}\).

One main tool in our analysis is an iterated Bäcklund transform, which allows us to nonlinearly add a multisoliton to an existing soliton free state (the soliton addition map) or alternatively to remove a multisoliton from a multisoliton state (the soliton removal map). The properties and the regularity of these maps are extensively studied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信