学习和平衡大规模系统中的未知负载

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Diego Goldsztajn, Sem C. Borst, Johan S. H. van Leeuwaarden
{"title":"学习和平衡大规模系统中的未知负载","authors":"Diego Goldsztajn, Sem C. Borst, Johan S. H. van Leeuwaarden","doi":"10.1287/moor.2021.0212","DOIUrl":null,"url":null,"abstract":"Consider a system of identical server pools where tasks with exponentially distributed service times arrive as a time-inhomogeneous Poisson process. An admission threshold is used in an inner control loop to assign incoming tasks to server pools, while in an outer control loop, a learning scheme adjusts this threshold over time to keep it aligned with the unknown offered load of the system. In a many-server regime, we prove that the learning scheme reaches an equilibrium along intervals of time when the normalized offered load per server pool is suitably bounded and that this results in a balanced distribution of the load. Furthermore, we establish a similar result when tasks with Coxian distributed service times arrive at a constant rate and the threshold is adjusted using only the total number of tasks in the system. The novel proof technique developed in this paper, which differs from a traditional fluid limit analysis, allows us to handle rapid variations of the first learning scheme, triggered by excursions of the occupancy process that have vanishing size. Moreover, our approach allows us to characterize the asymptotic behavior of the system with Coxian distributed service times without relying on a fluid limit of a detailed state descriptor.Funding: The work in this paper was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek [Gravitation Grant NETWORKS-024.002.003 and Vici Grant 202.068].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning and Balancing Unknown Loads in Large-Scale Systems\",\"authors\":\"Diego Goldsztajn, Sem C. Borst, Johan S. H. van Leeuwaarden\",\"doi\":\"10.1287/moor.2021.0212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a system of identical server pools where tasks with exponentially distributed service times arrive as a time-inhomogeneous Poisson process. An admission threshold is used in an inner control loop to assign incoming tasks to server pools, while in an outer control loop, a learning scheme adjusts this threshold over time to keep it aligned with the unknown offered load of the system. In a many-server regime, we prove that the learning scheme reaches an equilibrium along intervals of time when the normalized offered load per server pool is suitably bounded and that this results in a balanced distribution of the load. Furthermore, we establish a similar result when tasks with Coxian distributed service times arrive at a constant rate and the threshold is adjusted using only the total number of tasks in the system. The novel proof technique developed in this paper, which differs from a traditional fluid limit analysis, allows us to handle rapid variations of the first learning scheme, triggered by excursions of the occupancy process that have vanishing size. Moreover, our approach allows us to characterize the asymptotic behavior of the system with Coxian distributed service times without relying on a fluid limit of a detailed state descriptor.Funding: The work in this paper was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek [Gravitation Grant NETWORKS-024.002.003 and Vici Grant 202.068].\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2021.0212\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2021.0212","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个由相同服务器池组成的系统,在这个系统中,服务时间呈指数分布的任务以时间同构泊松过程的形式到达。在一个内部控制环中,使用一个准入阈值将接收到的任务分配给服务器池,而在一个外部控制环中,一个学习方案会随着时间的推移调整该阈值,使其与系统的未知提供负载保持一致。在多服务器系统中,我们证明了当每个服务器池的归一化提供负载有适当界限时,学习方案会在一定时间间隔内达到平衡,从而实现负载的均衡分配。此外,当具有考克斯分布式服务时间的任务以恒定的速度到达,并且只使用系统中的任务总数来调整阈值时,我们也得出了类似的结果。本文开发的新颖证明技术不同于传统的流体极限分析,它允许我们处理第一学习方案的快速变化,这种快速变化是由占用过程中大小消失的偏移引发的。此外,我们的方法允许我们描述具有考克斯分布式服务时间的系统的渐近行为,而无需依赖详细状态描述符的流体极限:本文的研究工作得到了荷兰科学研究组织(Nederlandse Organisatie voor Wetenschappelijk Onderzoek)[引力资助 NETWORKS-024.002.003 和 Vici 资助 202.068]的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning and Balancing Unknown Loads in Large-Scale Systems
Consider a system of identical server pools where tasks with exponentially distributed service times arrive as a time-inhomogeneous Poisson process. An admission threshold is used in an inner control loop to assign incoming tasks to server pools, while in an outer control loop, a learning scheme adjusts this threshold over time to keep it aligned with the unknown offered load of the system. In a many-server regime, we prove that the learning scheme reaches an equilibrium along intervals of time when the normalized offered load per server pool is suitably bounded and that this results in a balanced distribution of the load. Furthermore, we establish a similar result when tasks with Coxian distributed service times arrive at a constant rate and the threshold is adjusted using only the total number of tasks in the system. The novel proof technique developed in this paper, which differs from a traditional fluid limit analysis, allows us to handle rapid variations of the first learning scheme, triggered by excursions of the occupancy process that have vanishing size. Moreover, our approach allows us to characterize the asymptotic behavior of the system with Coxian distributed service times without relying on a fluid limit of a detailed state descriptor.Funding: The work in this paper was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek [Gravitation Grant NETWORKS-024.002.003 and Vici Grant 202.068].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信