斯坦伯格的牛顿地层剖面图

IF 1.3 2区 数学 Q1 MATHEMATICS
Sian Nie
{"title":"斯坦伯格的牛顿地层剖面图","authors":"Sian Nie","doi":"10.1007/s00208-024-02872-2","DOIUrl":null,"url":null,"abstract":"<p>In this note, we introduce a natural analogue of Steinberg’s cross-section in the loop group of a reductive group <span>\\(\\textbf{G}\\)</span>. We show this loop Steinberg’s cross-section provides a simple geometric model for the poset <span>\\(B(\\textbf{G})\\)</span> of Frobenius-twisted conjugacy classes (referred to as Newton strata) of the loop group. As an application, we confirms a conjecture by Ivanov on decomposing loop Delgine–Lusztig varieties of Coxeter type. This geometric model also leads to new and direct proofs of several classical results, including the converse to Mazur’s inequality, Chai’s length formula on <span>\\(B(\\textbf{G})\\)</span>, and a key combinatorial identity in the study affine Deligne–Lusztig varieties with finite Coxeter parts.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"2010 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steinberg’s cross-section of Newton strata\",\"authors\":\"Sian Nie\",\"doi\":\"10.1007/s00208-024-02872-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this note, we introduce a natural analogue of Steinberg’s cross-section in the loop group of a reductive group <span>\\\\(\\\\textbf{G}\\\\)</span>. We show this loop Steinberg’s cross-section provides a simple geometric model for the poset <span>\\\\(B(\\\\textbf{G})\\\\)</span> of Frobenius-twisted conjugacy classes (referred to as Newton strata) of the loop group. As an application, we confirms a conjecture by Ivanov on decomposing loop Delgine–Lusztig varieties of Coxeter type. This geometric model also leads to new and direct proofs of several classical results, including the converse to Mazur’s inequality, Chai’s length formula on <span>\\\\(B(\\\\textbf{G})\\\\)</span>, and a key combinatorial identity in the study affine Deligne–Lusztig varieties with finite Coxeter parts.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"2010 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02872-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02872-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇论文中,我们介绍了斯坦伯格截面在还原群 \(\textbf{G}\) 的环群中的自然类比。我们证明了这个循环斯坦伯格截面为循环群的弗罗贝纽斯扭曲共轭类(称为牛顿层)的正集 \(B(\textbf{G})\) 提供了一个简单的几何模型。作为一个应用,我们证实了伊万诺夫关于分解环德尔金-卢斯齐惕格(Delgine-Lusztig)科赛特类型的猜想。这个几何模型还带来了几个经典结果的新的直接证明,包括马祖不等式的逆定理、柴氏关于 \(B(\textbf{G})\) 的长度公式,以及研究具有有限 Coxeter 部分的仿射 Deligne-Lusztig 变体中的一个关键组合特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steinberg’s cross-section of Newton strata

In this note, we introduce a natural analogue of Steinberg’s cross-section in the loop group of a reductive group \(\textbf{G}\). We show this loop Steinberg’s cross-section provides a simple geometric model for the poset \(B(\textbf{G})\) of Frobenius-twisted conjugacy classes (referred to as Newton strata) of the loop group. As an application, we confirms a conjecture by Ivanov on decomposing loop Delgine–Lusztig varieties of Coxeter type. This geometric model also leads to new and direct proofs of several classical results, including the converse to Mazur’s inequality, Chai’s length formula on \(B(\textbf{G})\), and a key combinatorial identity in the study affine Deligne–Lusztig varieties with finite Coxeter parts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信