机器学习能否解释 ESG 因素产生的 Alpha?

IF 1.9 4区 经济学 Q2 ECONOMICS
Vittorio Carlei, Piera Cascioli, Alessandro Ceccarelli, Donatella Furia
{"title":"机器学习能否解释 ESG 因素产生的 Alpha?","authors":"Vittorio Carlei, Piera Cascioli, Alessandro Ceccarelli, Donatella Furia","doi":"10.1007/s10614-024-10602-8","DOIUrl":null,"url":null,"abstract":"<p>This research explores the use of machine learning to predict alpha in constructing portfolios, leveraging a broad array of environmental, social, and governance (ESG) factors within the S&amp;P 500 index. Existing literature bases analyses on synthetic indicators, this work proposes an analytical deep dive based on a dataset containing the sub-indicators that give rise to the aforementioned synthetic indices. Since such dimensionality of variables requires specific processing, we deemed it necessary to use a machine learning algorithm, allowing us to study, with strong specificity, two types of relationships: the interaction between individual ESG variables and their effect on corporate performance.The results clearly show that ESG factors have a significant relationship with company performance. These findings emphasise the importance of integrating ESG indicators into quantitative investment strategies using Machine Learning methodologies.</p>","PeriodicalId":50647,"journal":{"name":"Computational Economics","volume":"25 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can Machine Learning Explain Alpha Generated by ESG Factors?\",\"authors\":\"Vittorio Carlei, Piera Cascioli, Alessandro Ceccarelli, Donatella Furia\",\"doi\":\"10.1007/s10614-024-10602-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research explores the use of machine learning to predict alpha in constructing portfolios, leveraging a broad array of environmental, social, and governance (ESG) factors within the S&amp;P 500 index. Existing literature bases analyses on synthetic indicators, this work proposes an analytical deep dive based on a dataset containing the sub-indicators that give rise to the aforementioned synthetic indices. Since such dimensionality of variables requires specific processing, we deemed it necessary to use a machine learning algorithm, allowing us to study, with strong specificity, two types of relationships: the interaction between individual ESG variables and their effect on corporate performance.The results clearly show that ESG factors have a significant relationship with company performance. These findings emphasise the importance of integrating ESG indicators into quantitative investment strategies using Machine Learning methodologies.</p>\",\"PeriodicalId\":50647,\"journal\":{\"name\":\"Computational Economics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s10614-024-10602-8\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10602-8","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用 S&P 500 指数中广泛的环境、社会和治理(ESG)因素,探索如何使用机器学习预测构建投资组合的阿尔法。现有文献以合成指标为基础进行分析,而本研究则提出了一种基于数据集的深度分析方法,该数据集包含产生上述合成指数的子指标。由于变量的这种维度需要特殊处理,我们认为有必要使用机器学习算法,使我们能够非常具体地研究两类关系:单个 ESG 变量之间的相互作用及其对公司业绩的影响。这些发现强调了利用机器学习方法将环境、社会和公司治理指标纳入量化投资战略的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Can Machine Learning Explain Alpha Generated by ESG Factors?

Can Machine Learning Explain Alpha Generated by ESG Factors?

This research explores the use of machine learning to predict alpha in constructing portfolios, leveraging a broad array of environmental, social, and governance (ESG) factors within the S&P 500 index. Existing literature bases analyses on synthetic indicators, this work proposes an analytical deep dive based on a dataset containing the sub-indicators that give rise to the aforementioned synthetic indices. Since such dimensionality of variables requires specific processing, we deemed it necessary to use a machine learning algorithm, allowing us to study, with strong specificity, two types of relationships: the interaction between individual ESG variables and their effect on corporate performance.The results clearly show that ESG factors have a significant relationship with company performance. These findings emphasise the importance of integrating ESG indicators into quantitative investment strategies using Machine Learning methodologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Economics
Computational Economics MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.00
自引率
15.00%
发文量
119
审稿时长
12 months
期刊介绍: Computational Economics, the official journal of the Society for Computational Economics, presents new research in a rapidly growing multidisciplinary field that uses advanced computing capabilities to understand and solve complex problems from all branches in economics. The topics of Computational Economics include computational methods in econometrics like filtering, bayesian and non-parametric approaches, markov processes and monte carlo simulation; agent based methods, machine learning, evolutionary algorithms, (neural) network modeling; computational aspects of dynamic systems, optimization, optimal control, games, equilibrium modeling; hardware and software developments, modeling languages, interfaces, symbolic processing, distributed and parallel processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信